
How to securely isolate Damn
Vulnerable Linux with VirtualBox

Motivation
I have this vision of going through and testing software inside of a closed lab that allows me to
understand exploits and vulnerabilities at a deep level. Instead of starting from scratch and rolling my
own distribution of Linux, I chose to use Damn Vulnerable Linux. This is to save time and get running as
quickly as possible. The key here is that all of the virtual machines will run inside of the VirtualBox
network of Host-only. This allows safe handling (isolation) of systems that could otherwise be exploited
and leveraged as jump points into your corporate or home infrastructure.

Test environment layout
My workstation is running Ubuntu 16.10.
I am first installing VirtualBox 5.1.6 for Ubuntu, using method 2 below.
Then Damn Vulnerable Linux 1.5.

Install VirtualBox

Method 1:

Download software package from:

https://www.virtualbox.org/wiki/Linux_Downloads

$ cd ~/Downloads
$ wget http://download.virtualbox.org/virtualbox/5.1.10/virtualbox-

5.1_5.1.10-112026~Ubuntu~yakkety_amd64.deb
$ sudo dpkg -i virtualbox-5.1_5.1.10-112026-Ubuntu-yakkety_amd64.deb

Method 2:

Append the following line to your /etc/apt/sources.list (assuming it doesn't exist):

deb http://download.virtualbox.org/virtualbox/debian yakkety contrib

https://www.virtualbox.org/wiki/Linux_Downloads

From Terminal (the $ means you are running this from your regular user account):

$ cd ~/Downloads
$ wget https://www.virtualbox.org/download/oracle_vbox_2016.asc
$ wget https://www.virtualbox.org/download/oracle_vbox.asc
$ sudo apt-key add oracle_vbox_2016.asc
$ sudo apt-key add oracle_vbox.asc
$ sudo apt-get update
$ sudo apt-get install virtualbox
$ sudo apt-get install dkms
$ sudo apt install virtualbox-ext-pack
$ sudo apt-get install virtualbox-ext-pack virtualbox-guest-additions-iso

Either method will work, I prefer method 2 because then you can get updates with the software.

Configure the multiple network domains:

This assumes you have not done this or need to modify your network.

Create NAT'ed Network:

When you see the “# at the beginning of a command line, that means you are running as root.

VBoxManage natnetwork add \
 --netname 192.168.139-NAT \
 --network "192.168.139.0/24" \
 --enable --dhcp on

Create the DHCP server:

VBoxManage dhcpserver add \
 --netname 192.168.139-NAT \
 --ip 192.168.139.3 \
 --lowerip 192.168.139.101 \
 --upperip 192.168.139.254 \
 --netmask 255.255.255.0 \
 --enable

Create hostonly interface:

VBoxManage hostonlyif create
VBoxManage hostonlyif ipconfig vboxnet0 \
 --ip 172.20.0.1 \
 --netmask 255.255.255.0
VBoxManage dhcpserver add \
 --ifname vboxnet0 \
 --ip 172.20.0.3 \
 --lowerip 172.20.0.101 \
 --upperip 172.20.0.254 \
 --netmask 255.255.255.0
VBoxManage dhcpserver modify \
 --ifname vboxnet0 \

 --enable

To list the NAT'ed networks:
VBoxManage list natnetworks

Output:

NetworkName: 192.168.139-NAT
IP: 192.168.139.1
Network: 192.168.139.0/24
IPv6 Enabled: No
IPv6 Prefix: fd17:625c:f037:a88b::/64
DHCP Enabled: Yes
Enabled: Yes
loopback mappings (ipv4)
 127.0.0.1=2

To List the DHCP server(s):
VBoxManage list dhcpservers

Output:

NetworkName: 192.168.139-NAT
IP: 192.168.139.3
NetworkMask: 255.255.255.0
lowerIPAddress: 192.168.139.101
upperIPAddress: 192.168.139.254
Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet0
IP: 172.20.0.3
NetworkMask: 255.255.255.0
lowerIPAddress: 172.20.0.101
upperIPAddress: 172.20.0.254
Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet1
IP: 0.0.0.0
NetworkMask: 0.0.0.0
lowerIPAddress: 0.0.0.0
upperIPAddress: 0.0.0.0
Enabled: No

Get the distribution

Get the distrobution:

$ cd ~/Downloads/
$ wget

http://osdn.net/projects/sfnet_virtualhacking/downloads/os/dvl/DVL_1.5_Infect

ious_Disease.iso/

Configure a new Virtual Machine for DVL

Open virtualbox and create a new virtual machine.

I named my virtual machine “DVL_1.5”, choose what you wish here.

I would recommend 4GB of memory. You can use less, but if you have the extra memory, I highly

recommend giving the system more than a fair amount of memory.

Check the create hard drive radio button.

Choose the VMDK radio button.

Choose the Fixed size radio button.

I named my disk, “VDL.sda.vmdk” and changed the size from 8GB to 16GB. The sda is so I know which

disk this is, in case I want to add more later. This ties to the internal mapping of drives so I know which

is which.

Change the memory to 4GB, if needed.

Uncheck the Floppy drive, don’t need it.

Change the processor count to “3”.

Change the Video Memory to 32 MB.

On the Controller: IDE, click on the little plus button over the CDROM icon. Point back to the ISO image

for DVL 1.5.

With the DVL image mounted.

I like to disable the Audio, it’s really not needed.

Finally, on the network tab, point the network interface to:

Attached to: Host-only Adapter

Name: vboxnet0

Setup and deployment of Vulnerable Damn Linux

Start the virtual machine instance of DVL 1.5, at the boot: prompt, hit Enter.

Login with:

Username: root

Password: toor

Check disk format, should be /dev/sda:
fdisk -l

Output:

Disk /dev/sda: 17.1 GB, 17179869184 bytes
255 heads, 63 sectors/track, 2088 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System

Begin the process of formatting the disk:

fdisk -l

Input (in this sequence):

: m
: n

: p

: 1
: Enter-Key for default
: Enter-Key again for default

With the 16GB disk, I had 2088 sectors.

View the new partion (inside of fdisk):

Disk /dev/sda: 17.1 GB, 17179869184 bytes
255 heads, 63 sectors/track, 2088 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 2088 2088 8032+ 83 Linux

Select “q” for quit:

q

Format the partition on /dev/sda:

mkfs.ext3 /dev/sda
y

Create a new folder to mount the new partition:

mkdir /mnt/dvl

Mount the partition:

mount /dev/sda /mnt/dvl

Start the window system:

startx &

In the bottom left of the screen, click on the KDE gear, an menu will pop up.

Go up on the menu and hover over "Be ReSlaxed", a new menu will appear.

Go right and hover over System, a new menu will appear.

Click on "BackTrack Installer".

A new window will appear, labeled BackTrack Installer.

Leave the field for "Source (BackTrack CD)" Blank, that means empty.

The value for "Install BackTrack to" should auto populate with: "/mnt/dvl"

The value for "Write MBR to" should auto populate with: "/dev/sda"

Check the radio box for "Real (2700 MB required)".

Finally click on Install.

Once the installer hits 100%, click on the Close button.

Open a new terminal.

Run a chroot environment for the new install and install lilo.

NOTE: You might see an error with chroot, this is ok.

chroot /mnt/dvl /bin/bash
lilo -v

Stop the system, inside the terminal:

exit
shutdown -h now

In VirtualBox, open up Settings for the DVL_1.5 virtual machine and dis-connect the ISO file from the

cdrom.

Start the virtual machine with VirtualBox.

Log into the virtual machine:

Login with:

Username: root

Password: toor

Backup image once built.
I used (inside my directory for virtual machines):

$ GZIP="-9"; export GZIP; time tar czf DVL_1.5.fresh.tgz DVL_1.5

It took over 11 minutes to compress the image with the highest compression, but the end result is a 2.1

GB gzip’ed tarbal that I can quickly recover from (I plan on dorking up the instance, so I need a recovery

point – and yes, I know about Snapshot technology – sometimes a simple baseline is the best thing to

recover from because the slate is pure; besides Snapshots are wonderful for quick change sets, but

having a pure baseline to go back to helps when you have so many compounded changes that you don’t

remember at what point you want to revert to → which also speaks to having good labels on your

snapshots). This is one of my quirks, I like using both methods (the tarball and Snapshots).

Conclusion
By following these steps, you will have a running instance of Vulnerable Damn Linux. From here, start
playing with turning on SSHD so that you can remotely connect (from your workstation into said
instance) and start configuration, or mis-configuration for other tools to exploit.

