
How to scan DVWA with the Free
edition of Burp Suite

Introduction
The motivation behind this paper is to have a working reference model for scanning any site with the
free edition of Burp Suite. I am using DVWA (Damn Vulnerable Web Application) because I can control
the route to said, and the host; thereby avoiding any legal predicaments. This boils down to that both
hosts are running on the same laptop. Be exceedingly cautious with Burp Suite to limit the scope of
what it can scan. The author of this paper will not be responsible for dummies scanning the wrong site
and their to-be legal problems.

Requirements
If you see the following $ symbol on a command line to execute, what that means is that the command
is executed as a regular user, i.e. the Ubuntu user. Ignore the leading $ and execute the rest of the
command.
$ command to execute as a regular user

If you see a command line lead with the # symbol, then that means that the command is executed as the
root user. This implies you need to elevate to the root user before running the command, e.g. with: sudo
su – root.
command to execute as the root user

VirtualBox
Go to: https://www.virtualbox.org/wiki/Downloads and download VirtualBox.

The author is running on Ubuntu 17.04, so following to this
URL: https://www.virtualbox.org/wiki/Linux_Downloads

For Ubuntu, double click on the .deb file, i.e. virtualbox-5.2_5.2.0-118431-Ubuntu-zesty_amd64.deb,
and install VirtualBox on your local workstation.

Clean VirtualBox Networking
Run these two commands from a Terminal:

VBoxManage list natnetworks
VBoxManage list dhcpservers

Output:
NetworkName: 192.168.139-NAT
IP: 192.168.139.1
Network: 192.168.139.0/24
IPv6 Enabled: No
IPv6 Prefix: fd17:625c:f037:a88b::/64
DHCP Enabled: Yes
Enabled: Yes
loopback mappings (ipv4)

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads

 127.0.0.1=2

NetworkName: 192.168.139-NAT
IP: 192.168.139.3
NetworkMask: 255.255.255.0
lowerIPAddress: 192.168.139.101
upperIPAddress: 192.168.139.254
Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet0
IP: 172.20.0.3
NetworkMask: 255.255.255.0
lowerIPAddress: 172.20.0.101
upperIPAddress: 172.20.0.254
Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet1
IP: 0.0.0.0
NetworkMask: 0.0.0.0
lowerIPAddress: 0.0.0.0
upperIPAddress: 0.0.0.0
Enabled: No

Now, delete ALL of the pre-installed VirtualBox networks (one at a time following the syntax below):

VBoxManage natnetwork remove --netname <NetworkName_from_above>
VBoxManage natnetwork remove --netname 192.168.139-NAT
repeat as many times as necessary to delete all of them.

VBoxManage dhcpserver remove --netname <DHCP_Server_NetworkName_from_above>
VBoxManage dhcpserver remove --netname 192.168.139-NAT
repeat as many times as necessary to delete all of them.

Add VirtualBox Networking
Now, add the new VirtualBox networks so the Kali Linux guides work.
VBoxManage natnetwork add \
 --netname 192.168.139-NAT \
 --network "192.168.139.0/24" \
 --enable --dhcp on

VBoxManage dhcpserver add \
 --netname 192.168.139-NAT \
 --ip 192.168.139.3 \
 --lowerip 192.168.139.101 \
 --upperip 192.168.139.254 \
 --netmask 255.255.255.0 \
 --enable

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0 \
 --ip 172.20.0.1 \
 --netmask 255.255.255.0

VBoxManage dhcpserver add \
 --ifname vboxnet0 \
 --ip 172.20.0.3 \
 --lowerip 172.20.0.101 \
 --upperip 172.20.0.254 \
 --netmask 255.255.255.0

VBoxManage dhcpserver modify \
 --ifname vboxnet0 \
 --enable

Vagrant
Go to: https://www.vagrantup.com/downloads.html, follow the appropriate link to your OS and 32 or
64 bit version representing your local workstation. Download.

For Ubuntu, double click on the .deb file, i.e. vagrant_2.0.1_x86_64.deb, and install Vagrant on your
local system.

Kali Linux

The author highly recommends to create a directory structure that is easy to navigate and find your
code. As an example, you could use something similar to:
${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Go ahead and make this structure with the following command (inside a Terminal):
$ mkdir –p ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Inside of the kali-linux-vm directory, populate a new file with the exact name, “Vagrantfile”. Case
matters, uppercase the “V”.

Vagrantfile:
-*- mode: ruby -*-
vi: set ft=ruby :

Vagrantfile API/syntax version.
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "Sliim/kali-2017.2-amd64"
 config.vm.box_version = "1"

 # For Linux systems with the Wireless network, uncomment the line:
 config.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line:
 #config.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)", auto_config: true

 config.vm.hostname = "kali-linux-vagrant"

 config.vm.provider "virtualbox" do |vb|
 vb.memory = "4096"
 vb.cpus = "3"
 vb.gui = true
 vb.customize ["modifyvm", :id, "--cpuexecutioncap", "95"]
 vb.customize ["modifyvm", :id, "--vram", "32"]
 vb.customize ["modifyvm", :id, "--accelerate3d", "on"]
 vb.customize ["modifyvm", :id, "--ostype", "Debian_64"]
 vb.customize ["modifyvm", :id, "--boot1", "dvd"]
 vb.customize ["modifyvm", :id, "--boot2", "disk"]
 vb.customize ["modifyvm", :id, "--audio", "none"]
 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
 end
end

https://www.vagrantup.com/downloads.html

Save and write this file.

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Then run (inside the directory kali-linux-vm):
$ vagrant up

This will download the appropriate image and start the virtual machine.

Once running, through the VirtuaBox GUI, login as root. Password is “toor”, root backwards. Edit the
following file:
/etc/ssh/sshd_config

And change the line:

#PermitRootLogin prothibit-password

To:
PermitRootLogin yes

Then restart the ssh daemon:
kill –HUP $(pgrep sshd)

Notice, you are on a Bridged adapter, this will open the instance to allow root to ssh in with the most
unsecure password in the world. Only make this change (allowing root to login via SSH) if you require
root SSH access. You can change the root user’s password, which is highly recommended.

Damn Vulnerable Web Application (DVWA)

Go ahead and make this structure with the following command (inside a Terminal):
$ mkdir –p ${HOME}/Source_Code/Education/vagrant-machines/dvwa-linux-vm/

Inside of the dvwa-linux-vm directory, populate a new file with the exact name, “Vagrantfile”. Case
matters, uppercase the “V”.

Vagrantfile:

setup local instance of Damn Vulnerable Web Application (DVWA):

Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 # For Linux systems with the Wireless network, uncomment the line:
 config.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line:
 #config.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)", auto_config: true

 # uncomment the next line for Macbook/OSx systems, wireless :
 # config.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)", auto_config: true

 config.vm.provision :shell, path: "bootstrap.sh"
 config.vm.hostname = "dvwa"

 config.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 vb.cpus = "2"
 vb.gui = false
 vb.customize ["modifyvm", :id, "--cpuexecutioncap", "95"]
 vb.customize ["modifyvm", :id, "--vram", "32"]
 vb.customize ["modifyvm", :id, "--accelerate3d", "on"]
 vb.customize ["modifyvm", :id, "--ostype", "Ubuntu_64"]
 vb.customize ["modifyvm", :id, "--boot1", "dvd"]
 vb.customize ["modifyvm", :id, "--boot2", "disk"]
 vb.customize ["modifyvm", :id, "--audio", "none"]
 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
 end
end

Save and write this file.

Inside of the dvwa-linux-vm directory, populate a new file with the exact name, “bootstrap.sh”. Case
matters, all lowercase.

bootstrap.sh (include the shebang in your file, the #!/usr/bin/env bash):

#!/usr/bin/env bash
PHP_FPM_PATH_INI='/etc/php/7.0/fpm/php.ini'
PHP_FPM_POOL_CONF='/etc/php/7.0/fpm/pool.d/www.conf'
MYSQL_ROOT_PW='Assword12345'
MYSQL_dvwa_user='dvwa_root'
MYSQL_dvwa_password='sunshine'
DVWA_admin_password='admin'
recaptcha_public_key='u8392ihj32kl8hujalkshuil32'
recaptcha_private_key='89ry8932873832lih32ilj32'

install_base() {
 add-apt-repository -y ppa:nginx/stable
 sudo apt-get update
 sudo apt-get dist-upgrade -y
 sudo apt-get install -y nginx mariadb-server mariadb-client php php-common php-cgi php-fpm
php-gd php-cli php-pear php-mcrypt php-mysql php-gd git vim
}

config_mysql(){
 mysqladmin -u root password "${MYSQL_ROOT_PW}"
 # Config the mysql config file for root so it doesn't prompt for password.
 # Also sets pw in plain text for easy access.
 # Don't forget to change the password here!!

cat <<EOF > /root/.my.cnf
[client]
user="root"
password="${MYSQL_ROOT_PW}"
EOF
 mysql -BNe "drop database if exists dvwa;"
 mysql -BNe "CREATE DATABASE dvwa;"
 mysql -BNe "GRANT ALL ON *.* TO '"${MYSQL_dvwa_user}"'@'localhost' IDENTIFIED BY
'"${MYSQL_dvwa_password}"';"

 service mysql restart

}

config_php(){
 ##Config PHP FPM INI to disable some security settings

 sed -i 's/^;cgi.fix_pathinfo.*$/cgi.fix_pathinfo = 0/g' ${PHP_FPM_PATH_INI}
 sed -i 's/allow_url_include = Off/allow_url_include = On/g' ${PHP_FPM_PATH_INI}
 sed -i 's/allow_url_fopen = Off/allow_url_fopen = On/g' ${PHP_FPM_PATH_INI}
 sed -i 's/safe_mode = On/safe_mode = Off/g' ${PHP_FPM_PATH_INI}
 echo "magic_quotes_gpc = Off" >> ${PHP_FPM_PATH_INI}
 sed -i 's/display_errors = Off/display_errors = On/g' ${PHP_FPM_PATH_INI}

 ##explicitly set pool options (these are defaults in ubuntu 16.04 so i'm commenting them out.
If they are not defaults for you try uncommenting these
 #sed -i 's/^;security.limit_extensions.*$/security.limit_extensions
= .php .php3 .php4 .php5 .php7/g' /etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^listen.owner.*$/listen.owner = www-data/g' /etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^listen.group.*$/listen.group = www-data/g' /etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^;listen.mode.*$/listen.mode = 0660/g' /etc/php/7.0/fpm/pool.d/www.conf

 systemctl restart php7.0-fpm
}

config_nginx(){

cat << 'EOF' > /etc/nginx/sites-enabled/default
server
{
 listen 80;
 root /var/www/html;
 index index.php index.html index.htm;
 #server_name localhost
 location "/"
 {
 index index.php index.html index.htm;
 #try_files $uri $uri/ =404;
 }

 location ~ \.php$
 {
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $request_filename;
 }
}
EOF

 systemctl restart nginx
}

install_dvwa(){

 if [[! -d "/var/www/html"]];
 then
 mkdir -p /var/www;
 ln -s /usr/share/nginx/html /var/www/html;
 chown -R www-data. /var/www/html;
 fi

 cd /var/www/html
 rm -rf /var/www/html/.[!.]*
 rm -rf /var/www/html/*
 git clone https://github.com/ethicalhack3r/DVWA.git ./
 chown -R www-data. ./
 cp config/config.inc.php.dist config/config.inc.php

 ### chmod uploads and log file to be writable by nobody

 chmod 777 ./hackable/uploads/
 chmod 777 ./external/phpids/0.6/lib/IDS/tmp/phpids_log.txt

 ## change the values in the config to match our setup (these are what you need to update!
 sed -i '/db_user/ s/root/'${MYSQL_dvwa_user}'/' /var/www/html/config/config.inc.php
 sed -i '/db_password/ s/p@ssw0rd/'${MYSQL_dvwa_password}'/'
/var/www/html/config/config.inc.php
 sed -i "/recaptcha_public_key/ s/''/'"${recaptcha_public_key}"'/"
/var/www/html/config/config.inc.php
 sed -i "/recaptcha_private_key/ s/''/'"${recaptcha_private_key}"'/"
/var/www/html/config/config.inc.php

}

update_mysql_user_pws(){
The mysql passwords are set via /usr/share/nginx/html/dvwa/includes/DBMS/MySQL.php.
If you edit this every time they are reset it will reset to those.
Otherwise you can do a sql update statement to update them all (they are just md5's of the
string.
The issue is the users table doesn't get created until you click that button T_T to init.

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'admin';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'gordonb';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = '1337';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'pablo';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'smithy';"

sed -i '/admin/ s/password/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/gordonb/ s/abc123/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/1337/ s/charley/'${DVWA_admin_password}'/g' /var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/pablo/ s/letmein/'${DVWA_admin_password}'/g' /var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/smithy/ s/password/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
}

install_base
config_mysql
install_dvwa
update_mysql_user_pws
config_php
config_nginx
Save and write this file.

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/dvwa-linux-vm/

Then run (inside the directory dvwa-linux-vm):
$ vagrant up

You will need the IP address from the new DVWA virtual machine.

Login with:

$ vagrant ssh

Then run:

$ ip a

Choose the second network adapter, it should look like:

ubuntu@dvwa:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
group default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 02:53:17:3c:de:80 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::53:17ff:fe3c:de80/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:f0:77:2d brd ff:ff:ff:ff:ff:ff
 inet 172.20.156.76/24 brd 172.20.156.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fef0:772d/64 scope link
 valid_lft forever preferred_lft forever

The author’s home wireless network uses 172.20.156.0/24 as the network range. Therefore, the
adapter, enp0s8 is what he is looking for. The IP to use as a target is 172.20.156.76. Write down your
value.

Burp Suite
Start both Kali-Linux and DVWA vagrant systems up.

Via the GUI console for Kali-Linux, log in with:
username: root

password: toor

The following screen shows the desktop.

Go ahead and open Burp Suite, in the picture above, the sixth icon down on the sidebar.

Above we see the first page once activated.

Click on the Proxy tab, then Intercept tab, to see if the Intercept is on or off.

Next, open the Target, then Scope tabs. In Target Scope, click on Add, then give it the IP address of your
target. In this case, it is DVWA.

Under User options, you can add credentials, as needed.

Next, on Proxy, then Options, we see that this is the page to set your local proxy that you will then
configure your Firefox browser to proxy to 127.0.0.1:8080 as an HTTP proxy, and then check the box for
all protocols (inside the Firefox browser). Go ahead and launch Firefox if you haven’t and set the proxy.
Then open a new tab and navigate to your target web page (DVWA which for me is on 172.20.156.76).

Verify on the Target tab that your scope is set to your IP address of the target. Then on the Spider tab,
change the Spider Scope to the second radio button down and define the custom scope, in this case,
HTTP, 172.20.156.76, Port 80. Click on the Spider’s paused button to un-pause the Spider. This will
crawl your site.

After the Spider is finished, very quick, you will have results back in your main target tab. Here we see
the many vulnerabilities that of course exist in DVWA.

Conclusion
By following this guide, you will have setup both Kali-Linux and DVWA, and launched Burp Suite with a
successful attack of DVWA (on your local system). This is just the beginning. Kind of like being in
kindergarten. Burp Suite is so powerful. If you are heavily into penetration testing and/or vulnerability
assessments, the author highly recommends purchasing a licensed copy of Burp Suite Professional.
There are a lot more baked in attacks and it does more right out of the box. This is not saying you
cannot add more tests to the free edition, but it comes down to how much you know. If you have a
masters or Ph.D in Computer Science, then this is a worthy challenge. If you don’t, then the chore of
finding and injecting worthwhile tests is not for the faint of heart. This stuff is hard; Burp Suite does a
decent job of making testing less painful for the average person.

The author is not getting paid any money for these papers, nor does he receive any compensation from
external companies. In two different jobs, he was worked as a pen tester and used the professional
version of Burp Suite to provide solid information back to customers on vulnerabilities within their
respective infrastructures. What is shown in this paper is less than 20% of what the capabilities that the
Professional version provides.

	Introduction
	Requirements
	VirtualBox
	Clean VirtualBox Networking
	Add VirtualBox Networking

	Vagrant

	Kali Linux
	Damn Vulnerable Web Application (DVWA)
	Burp Suite
	Conclusion

