
How	to	setup	an	enterprise	level	
Certificate	Authority	using	openssl	

Introduction	
The	motivation	for	writing	this	paper	is	that	I	stumbled	upon	a	situation	where	I	needed	a	no-cost,	
signed	certificate	with	a	root	Certificate	Authorities	(CA)	signing	chain	in	PEM	format.		This	effort	is	
actually	pretty	simple,	but	takes	some	degree	of	thought	in	order	to	put	it	into	effect.	
	

Requirements	
You	will	need	at	least	openssl	version	1.0.1	for	this	task.	

I’m	writing	and	performing	the	creation	on	a	macbook,	but	linux	will	also	work	in	the	same	fashion.	

I	used	brew	to	install	this	version,	OpenSSL 1.0.2p, 14 Aug 2018.	

	

Layout	
Create	a	directory	structure	in	your	local	home	directory	
$ umask 0022
$ mkdir ~/PKI_20180826_fortress.lan
$ cd ~/PKI_20180826_fortress.lan

	
	
Create	your	base	directories	
$ mkdir -p ca/{root-ca,signing-ca}/{db,private}
$ mkdir crl
$ mkdir certs
$ chmod 700 ca/signing-ca/private
$ chmod 700 ca/root-ca/private

The	ca	directory	holds	the	CA	resources,		
the	crl	directory	holds	Certificate	Revocation	Lists,		
and	the	certs	directory	holds	user	and	server	certificates.	
	
	
Create	your	databases	
cp /dev/null ca/root-ca/db/root-ca.db
cp /dev/null ca/root-ca/db/root-ca.db.attr
cp /dev/null ca/signing-ca/db/signing-ca.db
cp /dev/null ca/signing-ca/db/signing-ca.db.attr
printf “01\n” > ca/root-ca/db/root-ca.crt.srl
printf “01\n” > ca/root-ca/db/root-ca.crl.srl
printf “01\n” > ca/signing-ca/db/signing-ca.crt.srl
printf “01\n” > ca/signing-ca/db/signing-ca.crl.srl

The	database	files	must	exist	before	the	openssl ca	command	can	be	used.	
	

With	the	next	four	sections	starting	with	Populate…	you	are	creating	a	heredoc,	simply	copy	and	paste	
from	the	cat <<-file_name>EOF	all	the	way	to	the	end	of	the	section	with	EOF	into	your	terminal.		
You	can	paste	hundreds	of	lines	of	code	using	this	method	all	at	once	in	order	to	create	documents.	
	
Populate	the	etc/email.conf	file	
cat <<-etc/email.conf>EOF
Email certificate request

This file is used by the openssl req command. Since we cannot know the DN in
advance the user is prompted for DN information.

[req]
default_bits = 2048 # RSA key size
encrypt_key = yes # Protect private key
default_md = sha1 # MD to use
utf8 = yes # Input is UTF-8
string_mask = utf8only # Emit UTF-8 strings
prompt = yes # Prompt for DN
distinguished_name = email_dn # DN template
req_extensions = email_reqext # Desired extensions

[email_dn]
0.domainComponent = "1. Domain Component (eg, com) "
1.domainComponent = "2. Domain Component (eg, company) "
2.domainComponent = "3. Domain Component (eg, pki) "
organizationName = "4. Organization Name (eg, company) "
organizationalUnitName = "5. Organizational Unit Name (eg, section) "
commonName = "6. Common Name (eg, full name)"
commonName_max = 64
emailAddress = "7. Email Address (eg, name@fqdn)"
emailAddress_max = 40

[email_reqext]
keyUsage = critical,digitalSignature,keyEncipherment
extendedKeyUsage = emailProtection,clientAuth
subjectKeyIdentifier = hash
subjectAltName = email:move
EOF

	 	

Populate	the	etc/root-ca.conf	file	
cat <<-etc/root-ca.conf>EOF
Root CA

The [default] section contains global constants that can be referred to from
the entire configuration file. It may also hold settings pertaining to more
than one openssl command.

[default]
ca = root-ca # CA name
dir = . # Top dir

The next part of the configuration file is used by the openssl req command.
It defines the CA's key pair, its DN, and the desired extensions for the CA
certificate.

[req]
default_bits = 2048 # RSA key size
encrypt_key = yes # Protect private key
default_md = sha1 # MD to use
utf8 = yes # Input is UTF-8
string_mask = utf8only # Emit UTF-8 strings
prompt = no # Don't prompt for DN
distinguished_name = ca_dn # DN section
req_extensions = ca_reqext # Desired extensions

[ca_dn]
0.domainComponent = "lan"
1.domainComponent = "fortress"
organizationName = "Fortress LAN"
organizationalUnitName = "Root CA"
commonName = "Root CA"

[ca_reqext]
keyUsage = critical,keyCertSign,cRLSign
basicConstraints = critical,CA:true
subjectKeyIdentifier = hash

The remainder of the configuration file is used by the openssl ca command.
The CA section defines the locations of CA assets, as well as the policies
applying to the CA.

[ca]
default_ca = root_ca # The default CA section

[root_ca]
certificate = $dir/ca/$ca.crt # The CA cert
private_key = $dir/ca/$ca/private/$ca.key # CA private key
new_certs_dir = $dir/ca/$ca # Certificate archive
serial = $dir/ca/$ca/db/$ca.crt.srl # Serial number file
crlnumber = $dir/ca/$ca/db/$ca.crl.srl # CRL number file
database = $dir/ca/$ca/db/$ca.db # Index file
unique_subject = no # Require unique subject
default_days = 10950 # How long to certify for (30 years)
default_md = sha1 # MD to use
policy = match_pol # Default naming policy
email_in_dn = no # Add email to cert DN
preserve = no # Keep passed DN ordering
name_opt = ca_default # Subject DN display options
cert_opt = ca_default # Certificate display options
copy_extensions = none # Copy extensions from CSR
x509_extensions = signing_ca_ext # Default cert extensions
default_crl_days = 365 # How long before next CRL
crl_extensions = crl_ext # CRL extensions

Naming policies control which parts of a DN end up in the certificate and
under what circumstances certification should be denied.

[match_pol]
domainComponent = match # Must match 'fortress.lan'

organizationName = match # Must match 'Fortress LAN'
organizationalUnitName = optional # Included if present
commonName = supplied # Must be present

[any_pol]
domainComponent = optional
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = optional
emailAddress = optional

Certificate extensions define what types of certificates the CA is able to
create.

[root_ca_ext]
keyUsage = critical,keyCertSign,cRLSign
basicConstraints = critical,CA:true
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always

[signing_ca_ext]
keyUsage = critical,keyCertSign,cRLSign
basicConstraints = critical,CA:true,pathlen:0
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always

CRL extensions exist solely to point to the CA certificate that has issued
the CRL.

[crl_ext]
authorityKeyIdentifier = keyid:always
EOF

	
	 	

Populate	the	etc/server.conf	file	
cat <<-etc/server.conf>EOF
TLS server certificate request

This file is used by the openssl req command. The subjectAltName cannot be
prompted for and must be specified in the SAN environment variable.

[default]
SAN = DNS:*.fortress.lan # Default value

[req]
default_bits = 2048 # RSA key size
encrypt_key = no # Protect private key
default_md = sha1 # MD to use
utf8 = yes # Input is UTF-8
string_mask = utf8only # Emit UTF-8 strings
prompt = yes # Prompt for DN
distinguished_name = server_dn # DN template
req_extensions = server_reqext # Desired extensions

[server_dn]
0.domainComponent = "1. Domain Component (eg, com) "
1.domainComponent = "2. Domain Component (eg, company) "
2.domainComponent = "3. Domain Component (eg, pki) "
organizationName = "4. Organization Name (eg, company) "
organizationalUnitName = "5. Organizational Unit Name (eg, section) "
commonName = "6. Common Name (eg, FQDN) "
commonName_max = 64

[server_reqext]
keyUsage = critical,digitalSignature,keyEncipherment
extendedKeyUsage = serverAuth,clientAuth
subjectKeyIdentifier = hash
subjectAltName = $ENV::SAN
EOF

	
	 	

Populate	the	etc/signing-ca.conf	file	
cat <<-etc/signing-ca.conf>EOF
Signing CA

The [default] section contains global constants that can be referred to from
the entire configuration file. It may also hold settings pertaining to more
than one openssl command.

[default]
ca = signing-ca # CA name
dir = . # Top dir

The next part of the configuration file is used by the openssl req command.
It defines the CA's key pair, its DN, and the desired extensions for the CA
certificate.

[req]
default_bits = 2048 # RSA key size
encrypt_key = yes # Protect private key
default_md = sha1 # MD to use
utf8 = yes # Input is UTF-8
string_mask = utf8only # Emit UTF-8 strings
prompt = no # Don't prompt for DN
distinguished_name = ca_dn # DN section
req_extensions = ca_reqext # Desired extensions

[ca_dn]
0.domainComponent = "lan"
1.domainComponent = "fortress"
organizationName = "Fortress LAN"
organizationalUnitName = "Signing CA"
commonName = "Signing CA"

[ca_reqext]
keyUsage = critical,keyCertSign,cRLSign
basicConstraints = critical,CA:true,pathlen:0
subjectKeyIdentifier = hash

The remainder of the configuration file is used by the openssl ca command.
The CA section defines the locations of CA assets, as well as the policies
applying to the CA.

[ca]
default_ca = signing_ca # The default CA section

[signing_ca]
certificate = $dir/ca/$ca.crt # The CA cert
private_key = $dir/ca/$ca/private/$ca.key # CA private key
new_certs_dir = $dir/ca/$ca # Certificate archive
serial = $dir/ca/$ca/db/$ca.crt.srl # Serial number file
crlnumber = $dir/ca/$ca/db/$ca.crl.srl # CRL number file
database = $dir/ca/$ca/db/$ca.db # Index file
unique_subject = no # Require unique subject
default_days = 1825 # How long to certify for
default_md = sha1 # MD to use
policy = match_pol # Default naming policy
email_in_dn = no # Add email to cert DN
preserve = no # Keep passed DN ordering
name_opt = ca_default # Subject DN display options
cert_opt = ca_default # Certificate display options
copy_extensions = copy # Copy extensions from CSR
x509_extensions = email_ext # Default cert extensions
default_crl_days = 7 # How long before next CRL
crl_extensions = crl_ext # CRL extensions

Naming policies control which parts of a DN end up in the certificate and
under what circumstances certification should be denied.

[match_pol]
domainComponent = match # Must match 'fortress.lan'

organizationName = match # Must match 'Fortress LAN'
organizationalUnitName = optional # Included if present
commonName = supplied # Must be present

[any_pol]
domainComponent = optional
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = optional
emailAddress = optional

Certificate extensions define what types of certificates the CA is able to
create.

[email_ext]
keyUsage = critical,digitalSignature,keyEncipherment
basicConstraints = CA:false
extendedKeyUsage = emailProtection,clientAuth
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always

[server_ext]
keyUsage = critical,digitalSignature,keyEncipherment
basicConstraints = CA:false
extendedKeyUsage = serverAuth,clientAuth
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always

CRL extensions exist solely to point to the CA certificate that has issued
the CRL.

[crl_ext]
authorityKeyIdentifier = keyid:always
EOF

	
	 	

Generate	the	initial	CA	request	(CSR)	
openssl req -new \
 -config etc/root-ca.conf \
 -out ca/root-ca.csr \
 -keyout ca/root-ca/private/root-ca.key

With	the	openssl req -new	command	we	create	a	private	key	and	a	certificate	signing	request	(CSR)	
for	the	root	CA.		You	will	be	asked	for	a	passphrase	to	protect	the	private	key.	
The	openssl req	command	takes	its	configuration	from	the	[req]	section	of	the	configuration	file.	

Sign	the	CA	Certificate	with	the	root-CA	
openssl ca –selfsign \
 -config etc/root-ca.conf \
 -in ca/root-ca.csr \
 -out ca/root-ca.crt \
 -extensions root_ca_ext

With	the	openssl ca	command	we	issue	a	root	CA	certificate	based	on	the	CSR.		The	root	certificate	is	
self-signed	and	serves	as	the	starting	point	for	all	trust	relationships	in	the	PKI.		The	openssl ca	
command	takes	its	configuration	from	the	[ca]	section	of	the	configuration	file.	
	
	
Create	the	Signing	CA	request	(CSR)	
openssl req -new \
 -config etc/signing-ca.conf \
 -out ca/signing-ca.csr \
 -keyout ca/signing-ca/private/signing-ca.key

	
	
Geneate	the	Signing	CA	certificate	
openssl ca \
 -config etc/root-ca.conf \
 -in ca/signing-ca.csr \
 -out ca/signing-ca.crt \
 -extensions signing_ca_ext

With	the	openssl ca	command	we	issue	a	certificate	based	on	the	CSR.		The	command	takes	its	
configuration	from	the	[ca]	section	of	the	configuration	file.		Note	that	it	is	the	root	CA	that	issues	the	
signing	CA	certificate!		Note	also	that	we	attach	a	different	set	of	extensions.	
	
	

Creating	Server	Certificates	
	
Create	a	Server	request	(CSR)	
SAN=DNS:www.fortess.lan \
 openssl req -new \
 -config etc/server.conf \
 -out certs/fortress.lan.csr \
 -keyout certs/fortress.lan.key

Next	we	create	the	private	key	and	CSR	for	a	TLS-server	certificate	using	another	request	configuration	
file.		When	prompted	enter	these	DN	components:	DC=lan, DC=fortress, O=Fortress LAN,

CN=www.fortress.lan.		Note	that	the	subjectAltName	must	be	specified	and	passed	in	as	an	
environment	variable.		Also	of	note	is	that	server	keys	typically	have	no	passphrase.	
	
Sign	the	TLS	Server	certificate	
openssl ca \
 -config etc/signing-ca.conf \
 -in certs/fortress.lan.csr \
 -out certs/fortress.lan.crt \
 -extensions server_ext

	
	
How	to	Revoke	a	certificate	
openssl ca \
 -config etc/signing-ca.conf \
 -revoke ca/signing-ca/01.pem \
 -crl_reason superseded

Certain	events,	like	a	certificates	replacement	or	loss	of	private	key,	requires	that	a	certificate	to	be	
revoked	before	its	scheduled	expiration	date.		The	openssl ca -revoke command	marks	a	
certificate	as	revoked	in	the	CA	database.		It	will	from	then	on	be	included	in	CRLs	issued	by	the	CA.		The	
above	command	revokes	the	certificate	with	serial	number	01	(hex).		You	have	to	know	the	serial	
number	of	the	certificate	that	you	wish	to	revoke.		This	assumes	that	you	plan	to	public	the	CRL.	
	
	
How	to	Generate	a	CRL	
openssl ca –gencrl \
 -config etc/signing-ca.conf \
 -out crl/signing-ca.crl

The	openssl ca -gencrl	command	creates	a	certificate	revocation	list	(CRL).		
The	CRL	contains	all	revoked,	not-yet-expired	certificates	from	the	CA	database.		
A	new	CRL	must	be	issued	at	regular	intervals.	
	
	
How	to	create	a	root	certificate	chain	PEM	bundle	
$ cat ca/signing-ca.crt ca/root-ca.crt | \
 sed -n '/-----BEGIN CERTIFICATE-----/,/-----END CERTIFICATE-----/p' > ca/signing-ca-chain.pem

	

Backups	
It	should	go	without	saying	that	once	this	structure	is	created	and	used,	you	will	want	to	backup	your	
laptop	to	at	least	2	separate	external	hard	drives	to	increase	the	ability	of	recovery	when	your	local	hard	
drive	fails.		Also,	keep	these	drives	in	a	safe	and	secure	environment,	e.g.	locked	office	drawer	for	one	
and	the	other	in	a	safe.		You	get	the	general	idea.		You	don’t	need	anyone	stealing	your	backup	to	use	to	
generate	new	certs	for	malicious	purposes.		If	you	plan	on	making	a	lot	of	certs,	I	would	use	the	
following	crontab	to	automate	backing	up	the	cert	repo	into	a	tarball	locally.		You	will	still	need	to	back	
up	weekly	or	more	frequently	to	an	external	hard	drive.	
	
	
Crontab	Example	(this	is	all	one	line)	
15 09 * * 2 /usr/bin/tar cf - ~/PKI_20180826_fortress.lan | /usr/bin/gzip -4c >
/opt/backups/PKI_$(date +\%Y-\%m-\%d-\%Hh\%Mm\%Ss_\%A).tar.gz

Conclusion	
By	following	this	guide,	the	user	has	created	a	folder	structure	to	create	and	hold	new	certificates	on	
your	laptop/workstation.		For	deployment	of	these	certs,	you	will	most	likely	want	the	.crt	file	as	well	as	
the	.key	file.		The	.crt	file	is	your	public	key,	and	the	.key	file	is	your	private	key	that	you	will	not	want	to	
share	or	reveal	to	anyone.		Finally	add	the	signing-ca-chain.pem	to	the	bundle,	which	can	be	dependent	
on	the	application	using	them.		In	example,	for	Elasticsearch	version	6.4,	you	need	all	three	certs	in	
order	to	secure	management	and	transport	channels.		The	last	nugget	of	wisdom	here,	is	the	magic	of	
Wildcard	certificates.		You	can	go	through	and	set	a	wildcard	in	the	Common	Name,	e.g.	
CN=*.fortress.lan.		What	happens	is,	when	you	go	to	use	that	on	any	web	server	or	application	server	in	
your	domain	‘.fortress.lan’,	it	will	use	the	wildcard.		Think	about	this	for	a	second,	with	three	files,	you	
can	secure	all	of	your	servers	in	one	domain.		This	means	less	work	for	you	if	you	choose	to	automate	
the	process,	i.e.	using	puppet/ansible/chef	to	deploy	your	encryption	certificates	to	all	of	your	
application	and	web	servers.	

