
How	to	use	Kali	Linux	The	Browser	
Exploitation	Framework	(BeEF)	to	

test	Web	Browsers.	

Introduction	
The	motivation	for	this	paper	is	to	show	the	user	how	to	quickly	get	Kali	Linux	up	and	running,	and	start	
using	BeEF	for	testing	browser	vulnerabilities.		The	author’s	brain	was	shocked	at	how	easy	this	works.		
If	you	can	redirect	someone	from	a	page	to	the	hook.js,	you	literally	control	their	browser.	
	
Basically:		[BeEF]	“is	a	penetration	testing	tool	that	focuses	on	the	web	browser.	Amid	growing	concerns	
about	web-borne	attacks	against	clients,	including	mobile	clients,	BeEF	allows	the	professional	
penetration	tester	to	assess	the	actual	security	posture	of	a	target	environment	by	using	client-side	
attack	vectors.	Unlike	other	security	frameworks,	BeEF	looks	past	the	hardened	network	perimeter	and	
client	system,	and	examines	exploitability	within	the	context	of	the	one	open	door:	the	web	browser.	
BeEF	will	hook	one	or	more	web	browsers	and	use	them	as	beachheads	for	launching	directed	command	
modules	and	further	attacks	against	the	system	from	within	the	browser	context.”	
Source:		https://beefproject.com/	

	

Requirements	
If	you	see	the	following	$	symbol	on	a	command	line	to	execute,	what	that	means	is	that	the	command	
is	executed	as	a	regular	user,	i.e.	the	Ubuntu	user.		Ignore	the	leading	$	and	execute	the	rest	of	the	
command.	
$ command to execute as a regular user

If	you	see	a	command	line	lead	with	the	#	symbol,	then	that	means	that	the	command	is	executed	as	the	
root	user.		This	implies	you	need	to	elevate	to	the	root	user	before	running	the	command,	e.g.	with:	sudo
su – root.	
command to execute as the root user

	

XSS,	a	quick	refresher	on	what	it	is	and	common	types:	
“Cross-site scripting (XSS) is a type of computer security
vulnerability typically found in web applications. XSS enables
attackers to inject client-side scripts into web pages viewed by other
users. A cross-site scripting vulnerability may be used by attackers
to bypass access controls such as the same-origin policy. Cross-site
scripting carried out on websites accounted for roughly 84% of all
security vulnerabilities documented by Symantec as of 2007.

....

Non-persistent (reflected)

The non-persistent (or reflected) cross-site scripting vulnerability
is by far the most basic type of web vulnerability. These holes show
up when the data provided by a web client, most commonly in HTTP query
parameters (e.g. HTML form submission), is used immediately by server-
side scripts to parse and display a page of results for and to that
user, without properly sanitizing the request.

Because HTML documents have a flat, serial structure that mixes
control statements, formatting, and the actual content, any non-
validated user-supplied data included in the resulting page without
proper HTML encoding, may lead to markup injection. A classic example
of a potential vector is a site search engine: if one searches for a
string, the search string will typically be redisplayed verbatim on
the result page to indicate what was searched for. If this response
does not properly escape or reject HTML control characters, a cross-
site scripting flaw will ensue.

A reflected attack is typically delivered via email or a neutral web
site. The bait is an innocent-looking URL, pointing to a trusted site
but containing the XSS vector. If the trusted site is vulnerable to
the vector, clicking the link can cause the victim's browser to
execute the injected script.

Persistent (or Stored)

The persistent (or stored) XSS vulnerability is a more devastating
variant of a cross-site scripting flaw: it occurs when the data
provided by the attacker is saved by the server, and then permanently
displayed on "normal" pages returned to other users in the course of
regular browsing, without proper HTML escaping. A classic example of
this is with online message boards where users are allowed to post
HTML formatted messages for other users to read.

For example, suppose there is a dating website where members scan the
profiles of other members to see if they look interesting. For privacy
reasons, this site hides everybody's real name and email. These are
kept secret on the server. The only time a member's real name and
email are in the browser is when the member is signed in, and they
can't see anyone else's.

Suppose that Mallory, an attacker, joins the site and wants to figure
out the real names of the people she sees on the site. To do so, she
writes a script designed to run from other people's browsers when they

visit her profile. The script then sends a quick message to her own
server, which collects this information.

To do this, for the question "Describe your Ideal First Date", Mallory
gives a short answer (to appear normal) but the text at the end of her
answer is her script to steal names and emails. If the script is
enclosed inside a <script> element, it won't be shown on the screen.
Then suppose that Bob, a member of the dating site, reaches Mallory’s
profile, which has her answer to the First Date question. Her script
is run automatically by the browser and steals a copy of Bob’s real
name and email directly from his own machine.

Persistent XSS vulnerabilities can be more significant than other
types because an attacker's malicious script is rendered
automatically, without the need to individually target victims or lure
them to a third-party website. Particularly in the case of social
networking sites, the code would be further designed to self-propagate
across accounts, creating a type of client-side worm.

The methods of injection can vary a great deal; in some cases, the
attacker may not even need to directly interact with the web
functionality itself to exploit such a hole. Any data received by the
web application (via email, system logs, IM etc.) that can be
controlled by an attacker could become an injection vector.”

Source:	https://en.wikipedia.org/wiki/Cross-site_scripting	

	

VirtualBox	
Go	to:		https://www.virtualbox.org/wiki/Downloads	and	download	VirtualBox.	
	
The	author	is	running	on	Ubuntu	17.04,	so	following	to	this	URL:		
https://www.virtualbox.org/wiki/Linux_Downloads	
	
For	Ubuntu,	double	click	on	the	.deb	file,	i.e.	virtualbox-5.2_5.2.0-118431-Ubuntu-zesty_amd64.deb,	
and	install	VirtualBox	on	your	local	workstation.	
	
	
Clean	VirtualBox	Networking	
Run	these	two	commands	from	a	Terminal:	
	
VBoxManage list natnetworks
VBoxManage list dhcpservers
	
Output:
NetworkName: 192.168.139-NAT
IP: 192.168.139.1

Network: 192.168.139.0/24
IPv6 Enabled: No
IPv6 Prefix: fd17:625c:f037:a88b::/64
DHCP Enabled: Yes
Enabled: Yes
loopback mappings (ipv4)
 127.0.0.1=2

NetworkName: 192.168.139-NAT
IP: 192.168.139.3
NetworkMask: 255.255.255.0
lowerIPAddress: 192.168.139.101
upperIPAddress: 192.168.139.254
Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet0
IP: 172.20.0.3
NetworkMask: 255.255.255.0
lowerIPAddress: 172.20.0.101
upperIPAddress: 172.20.0.254
Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet1
IP: 0.0.0.0
NetworkMask: 0.0.0.0
lowerIPAddress: 0.0.0.0
upperIPAddress: 0.0.0.0
Enabled: No

	
Now,	delete	ALL	of	the	pre-installed	VirtualBox	networks	(one	at	a	time	following	the	syntax	below):	
	
VBoxManage natnetwork remove --netname <NetworkName_from_above>
VBoxManage natnetwork remove --netname 192.168.139-NAT
repeat as many times as necessary to delete all of them.

	
VBoxManage dhcpserver remove --netname <DHCP_Server_NetworkName_from_above>
VBoxManage dhcpserver remove --netname 192.168.139-NAT
repeat as many times as necessary to delete all of them.

	
	
Add	VirtualBox	Networking	
Now,	add	the	new	VirtualBox	networks	so	the	Kali	Linux	guides	work.	
VBoxManage natnetwork add \
 --netname 192.168.139-NAT \
 --network "192.168.139.0/24" \
 --enable --dhcp on

VBoxManage dhcpserver add \
 --netname 192.168.139-NAT \
 --ip 192.168.139.3 \
 --lowerip 192.168.139.101 \
 --upperip 192.168.139.254 \
 --netmask 255.255.255.0 \
 --enable

	
VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0 \
 --ip 172.20.0.1 \
 --netmask 255.255.255.0

VBoxManage dhcpserver add \
 --ifname vboxnet0 \
 --ip 172.20.0.3 \
 --lowerip 172.20.0.101 \
 --upperip 172.20.0.254 \

 --netmask 255.255.255.0

VBoxManage dhcpserver modify \
 --ifname vboxnet0 \
 --enable

	

	

Vagrant	
Go	to:		https://www.vagrantup.com/downloads.html,	follow	the	appropriate	link	to	your	OS	and	32	or	
64	bit	version	representing	your	local	workstation.		Download.	

For	Ubuntu,	double	click	on	the	.deb	file,	i.e.	vagrant_2.0.1_x86_64.deb,	and	install	Vagrant	on	your	
local	system.	

	

Kali	Linux	
	

The	author	highly	recommends	to	create	a	directory	structure	that	is	easy	to	navigate	and	find	your	
code.	As	an	example,	you	could	use	something	similar	to:	
${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/	

Go	ahead	and	make	this	structure	with	the	following	command	(inside	a	Terminal):	
$ mkdir –p ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Inside	of	the	kali-linux-vm	directory,	populate	a	new	file	with	the	exact	name,	“Vagrantfile”.		Case	
matters,	uppercase	the	“V”.	

Vagrantfile:	
-*- mode: ruby -*-
vi: set ft=ruby :

Vagrantfile API/syntax version.
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.box = "Sliim/kali-2017.2-amd64"
 config.vm.box_version = "1"

 # For Linux systems with the Wireless network, uncomment the line:
 config.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line:
 #config.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)", auto_config: true

 config.vm.hostname = "kali-linux-vagrant"

 config.vm.provider "virtualbox" do |vb|
 vb.memory = "4096"
 vb.cpus = "3"
 vb.gui = true
 vb.customize ["modifyvm", :id, "--cpuexecutioncap", "95"]
 vb.customize ["modifyvm", :id, "--vram", "32"]
 vb.customize ["modifyvm", :id, "--accelerate3d", "on"]
 vb.customize ["modifyvm", :id, "--ostype", "Debian_64"]

 vb.customize ["modifyvm", :id, "--boot1", "dvd"]
 vb.customize ["modifyvm", :id, "--boot2", "disk"]
 vb.customize ["modifyvm", :id, "--audio", "none"]
 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
 end
end

Save	and	write	this	file.	

From	a	Terminal,	change	directory	to:	

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

	

Then	run	(inside	the	directory	kali-linux-vm):	
$ vagrant up

This	will	download	the	appropriate	image	and	start	the	virtual	machine.	

Once	running,	through	the	VirtuaBox	GUI,	login	as	root.		Password	is	“toor”,	root	backwards.		Edit	the	
following	file:
/etc/ssh/sshd_config

And change the line:

#PermitRootLogin prothibit-password

To:	
PermitRootLogin yes

Then	restart	the	ssh	daemon:	
kill –HUP $(pgrep sshd)

Notice,	you	are	on	a	Bridged	adapter,	this	will	open	the	instance	to	allow	root	to	ssh	in	with	the	most	
unsecure	password	in	the	world.		Only	make	this	change	(allowing	root	to	login	via	SSH)	if	you	require	
root	SSH	access.		You	can	change	the	root	user’s	password,	which	is	highly	recommended.	

The	Browser	Exploitation	Framework	(BeEF)	
First	launch	Kali-Linux	Vagrant	box.	

Then	log	into	Kali-Linux	with	username:	root	and	password:	toor.	

	

First,	find	you	ip	address	with	the	command:		

ip a
	

	

Next,	start	the	Apache2	web	server	on	the	Kali	Linux	instance	with	the	command:		

server apache2 start
	

Then	modify	the	file:	/var/www/html/index.html	with	the	following	content	(shown	at	the	bottom	of	
the	following	screenshot.		Change	the	IP	address	to	match	your	network.	

	

Next,	start	the	BeEF	application:	

cd /usr/share/beef-xss/
./beef
Please	copy	the	RESTful	API	key	into	your	memory	buffer.	

	

Now	open	the	Firefox	browser	in	Kali	Linux	and	point	to	http://127.0.0.1:3000/ui/panel	

Default	username/password	are:		beef/beef	

	

Now,	from	your	Host	Operating	system,	here	I	am	using	Chrome	70	on	a	macbook,	open	the	url:	
http://172.20.156.79	

The	page	will	be	blank.		Once	connected,	you	will	see	in	the	Kali	Linux	Firefox	browser	the	IP	address	
pop	up.		From	there,	you	can	navigate	to	items	of	interest	for	attacks.	

	

In	the	module	tree,	type	in	“redirect”.		Select	the	redirect	browser.		Select	the	redirect	URL	to	something	
of	your	choice.		The	author	thought	it	would	be	humorous	to	keep	redirecting	the	victim	to	
playboy.com,	especially	if	they	find	that	bothersome.		It’s	whatever	you	want	to	send	them	to.		Click	on	
“execute”	in	the	bottom	right	frame.	

	

The	following	shots	shows	the	default	page	with	nothing,	since	there	is	no	body	in	the	HTML	code.	

	

Next,	we	see	the	browser	in	the	Host	forced	to	redirect	to	playboy.com.		The	author	didn’t	have	to	hit	
refresh	or	do	anything	in	the	browser.		It	was	forced	to	this	site	because	of	the	XSS	hook.js.	

	

The	final	screen	shot	was	something	the	author	liked	a	lot	from	Chrome	version	70.		The	author	was	
randomly	hitting	buttons	in	the	BeEF	web	UI	and	Chrome	blocked	some	of	these	attacks.	

	

	

	

	

	

Conclusion	
By	following	this	guide,	the	user	has	setup	Vagrant,	Virtual	Box	and	Kali	Linux	on	their	local	system.		The	
reader	has	then	gone	through	and	used	BeEF	to	inject	a	XSS	hook	into	a	target	browser	and	launched	an	
attack	against	the	browser.		The	author’s	biggest	take	away	is	XSS	is	extremely	dangerous.		If	a	bad	actor	
can	gain	control	of	a	web	site,	injecting	the	hook.js	into	existing	code	is	trivial.		From	that	point,	the	bad	
actor	just	has	to	sit	back	and	wait	for	people	to	hit	their	honeypot.		Once	connected,	the	only	way	to	
disconnect	from	the	XSS	hook.js	code,	is	to	shutdown	their	browser.			
	
The	next	thought	is	how	to	protect	a	web	site	from	this	type	of	attack.		The	answer	to	that	is	solid	
control	of	your	source	code,	i.e.	storing	in	a	private	repo	within	say	githhub	or	bitbucket,	and	then	the	
pull	mechanism	is	attached	to	a	read-only	account.		That	way,	if	a	bad	actor	gets	a	hold	of	the	server	
hosting	your	web	site,	they	can	only	pull	the	code	or	modify	the	local	code.		To	counter	the	site	being	
modified,	the	author’s	initial	thought	is	to	run	Aide	or	some	type	of	hashing	mechanism	from	a	remote	
server	that	is	highly	locked	down/secure,	and	triggering	an	email	alert	if	the	hashes	do	not	match	up.		
This	type	of	check	and	balance	system	needs	to	be	updated	every	time	new	code	is	deployed,	e.g.	CI/CD,	
and	also	run	semi	frequently	to	counter	the	risk	of	being	compromised.		If	the	code	has	not	changed,	
then	running	every	hour	or	less	should	not	piss	of	the	sys	admins	because	no	alerts	should	fire.		Shoot,	
this	would	be	a	great	use	of	Python,	but	you	need	some	type	of	database	to	keep	track	of	the	hashes.		
You	also	need	to	know	what	files	do	not	need	to	be	hashed,	that	are	running	files,	but	not	a	part	of	the	
deployed	code	base	(meaning	temporary	files).	

