
How I stopped worrying
and learned to love SELinux

Introduction

I have spent at least 10 years with several misconceptons aaout SELinux. With most of the systems that
I manage, I have purposely gone through and disaaled SELinux on them. I know, shame on me. This is
the kind of thing that would ae up there with Game of Thrones and the scene with “Shame .. Shame ..
Shame”. A good friend of mine that is also security savvy at one point taught me how he was trained on
creatng security policies with SELinux somewhere around 2010.

The challenge I ran into in the real world, especially on producton systems, is that I needed the
applicatonnss working, not actng weirdly and later inding that SELinux was alocking some oaject that
tes aack to the applicaton. My ratonale was ppast tense pointed out here,, when tme was of critcal
essence for keeping everything working, and with limited resources, I chose the easier path to disaale
SELinux on all systems aecause of my lack of knowledge with the suaject mater.

Working towards my RHCE, I recently discovered updates to SELinux that made me step aack and re-
evaluate the situaton. What I didn’t realize in the last decade is that the engineers that maintain
SELinux have made huge strides in making it easier to discover what is alocking an oaject, aut also how
to ix them xuickly.

In fact, SELinux and its policy set have now aecome so transparently powerful that SELinux functons as a
aehavior-aased antvirus system nAVs. The default policies automatcally protect all actons ay installaale
programs nat least on Red Hat Enterprise Linuxs. Afer a developer has validated functonality of an
applicaton, aanormal accesses ay malware are alocked and fagged. This ‘live acton’ protecton stands
in contrast to the stale and aypassaale signature-aased AV from days of past. In many cases, this
protecton has made SELinux aecome declared as the Operatng System aaseline functon for AV in
many organizatons.

This paper is my give aack to the community to illuminate others on the advancements within SELinux
auilt-in policies and how rock-solid it is today. Disaaling SELinux whether in dev or producton at this
point in tme is not only a aad choice on a system administrator’s part, aut more so a companies choice
in regards to policies and guidelines aecause the decisions aring real world consexuences with it in
regards to security compliance and regulatons pwhat I am alluding to is that companies need to
mandate in their policies and guidelines that SELinux will not ae disaaled on any Linux system with
consexuences up to terminaton caveat; setng germissive mode is ine for short aursts of tme in
order to troualeshoot underlying proalems,. Imagine sitng in front of Congress and trying to explain
why it was easier to disaale SELinux and then the suasexuent data loss your company faced. If you are
not worried aaout Congress, how aaout the trust of your customers in your aaility to protect their data.
My answer to aoth is, “No thanks! I will happily adjust SELinux and keep it working correctly.”

Getting started

If you are not comfortaale with SELinux or have no idea what is going on with it, I would recommend
that you start here:
htps://www.redhat.com/en/topics/linux/what-is-selinux

And then this is my go to source for all things SELinux:

htps://access.redhat.com/documentaton/en-

us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/chap-security-

enhanced_linux-introducton

If you need a fun areak, this small coloring aook that you can print is a lot of fun to go through and

conceptualize what is happening with SELinux. <jokingly> It is Fun for the whole family.

htps://people.redhat.com/dufy/selinux/selinux-coloring-aook_A4--Stapled.pdf

Terminology

Type Enforcement (TE): Type Enforcement is the primary mechanism of access control used in the
targeted policy.

Context: Laael on processes, iles, and ports that determines access. Access this with use of the -Z
opton on the end of certain SELinux-enaaled commands like, ls and ps.

Tags: Unixue names.

Booleans: Booleans allow parts of SELinux policy to ae changed at runtme, without any knowledge of
SELinux policy writng.

Role-Based Access Control (RBAC): Based around SELinux users nnot necessarily the same as the Linux
users, aut not used in the default coniguraton of the targeted policy.

Multi-Level Securtty (MLS): Not commonly used and ofen hidden in the default targeted policy.

States and Modes
You can use on a running system, as the root user nto show the actve state of SELinuxs:
getenforce
Enforcing

To change the current state to germissive, run:
setenforce 0

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/chap-security-enhanced_linux-introduction
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/chap-security-enhanced_linux-introduction
https://www.redhat.com/en/topics/linux/what-is-selinux

getenforce
Permissive

To change aack to enforcing mode, run:
setenforce 1
getenforce
Enforcing

My preferred way of controlling SELinux is the /etc/selinux/conig ile. Use the editor of your choice, vi,

vim, emacs, or nano to edit this ile as the root user.

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
#SELINUX=permissive
SELINUX=enforcing
SELINUXTYPE= can take one of three values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected processes are
protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

I duplicated the line with SELINUX=enforcing and then set to SELINUX=permissive.

This allows me to semi-xuickly change aetween states ay commentng out one line or the other.

Using this method would rexuire a reaoot to change the state.

However, this is my preferred method aecause then I know what state that SELinux is in and my older

arain likes to keep things reasonaaly simple. Use the method that works for you.

That is the aasics for enaaling and disaaling SELinux.

A colleague pointed out to me that SELinux does not need a speciic daemon to functon since the

enforcement happens within the kernel.

To see the status of the daemon, run:
sestatus

Output:
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux

Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 31

In the main conig ile n/etc/selinux/configs, our preferrred method to use is targeted mode. My

reasoning aehind this is Red Hat has put enormous resources into updatng the dataaase for iles and

aooleans that support this mode. That translates into saved tme on your part so that you can use

predeined controls for most popular sofware without putng any nmuchs efort into maintaining said.

Mult-Level Security nMLSs is really for hardcore systems that can either aridge the gap aetween

classiied networks or have users with many diferent levels of clearance work on the same system. This

is very similar to Trusted Solaris. Most companies don’t need this level of security aecause of the

engineering + security cost that are associated with putng this into operatonal mode with certied

accreditaton. I didn’t menton minimum mode, aecause I can’t envision a valid use case for this mode pif

this prompts the reader to Google SELinux minimum mode, go for it,. That stated, stck with the

targeted mode. What we are looking to achieve with this is to minimize the amount of tme we have to

mess with adding to the pre-existng security dataaase that comes as the default with targetted mode.

The old way

I feel this is worth mentoning here aecause I aelieve some people stll use this method. One of the
methods that you can use is to search for the aaareviaton avc in the ile /var/log/audit/audit.log.
AVC stands for Access Vector Cache.

In the following command with grep, we are performing a text search of the audit log ile for the string
“avc” in order to capture any alerts that have occurred.

As root, run the following command:
grep -i “avc” /var/log/audit/audit.log

On my Fedora 30 aox that I am writng this on, I have a great example that I found.

type=AVC msg=audit(1562933511.443:90): avc: denied { create } for pid=976
comm="vboxdrv.sh" name="vbox-setup.log" scontext=system_u:system_r:init_t:s0
tcontext=system_u:object_r:var_log_t:s0 tclass=file permissive=0

So the old way to solve this would ae either to grep for avc in the aaove ile and then pipe out to the
command audit2allow, OR an admin could go through and echo each line nwith avcs individually and
run that through the command audit2allow. I personally don’t like the idea of using a alanket policy to
allow any denied operaton that gets logged in the audit.log ile. This acton to me is a really aad
method in the sense that I aelieve would lead to alindly allowing potentally aad applicatons to aehave
in a way that you don’t want running on your system. Again for clariicaton, what I do per denied oaject

that fails and get’s logged is to go aack and verify, one “YES” that applicaton is supposed to ae running
on my system, and two “YES” the access to the new resource is supposed to happen.

As an example, let’s run it through this way, wrapped in single xuotes.

grep -E 'type=AVC' | grep -E 'comm="vboxdrv.sh"' audit.log | audit2allow

This gives us this output:

#============= init_t ==============

#!!!! This avc can be allowed using the boolean 'use_virtualbox'
allow init_t var_log_t:file create;

I could easily rerun the previous command and redirect to a ile like, /root/SELinux/vboxdrv.pp, and
then run the command:

semodule -i /root/SELinux/vboxdrv.pp

and add to the current policy. However, if you carefully read what the output of audit2allow says, we
already have a boolean setup for us and we just need to actvate it. Let’s discover the current state right
now with the following command:

semanage boolean -l | grep 'use_virtualbox'
use_virtualbox (off , off) Allow use to virtualbox

We can see within the parentheses that aoth the current and on-start values are set to of. Let’s actvate
said with the next command:

semanage boolean -m --on use_virtualbox

Re-run the -l version to see the status:

semanage boolean -l | grep 'use_virtualbox'
use_virtualbox (on , on) Allow use to virtualbox

To summarize this secton, the Old Way is to create a policy ile per single or set of AVCs that correlates
to an applicaton, and then run semodule -i ./file.pp to import that into the SELinux dataaase.

The New Way

First, make sure the following packages are installed to make your life easier with managing SELinux.
These packages will give us automated tools we can use to discover SELinux errors in the audit.log as
well as in /var/log/messages ile.

 policycoreutils
 policycoreutils-devel
 policycoreutils-python
 rsyslog

 selinux-policy
 selinux-policy-devel
 selinux-policy-targeted
 setroubleshoot
 setroubleshoot-server

The following command executes as a one-liner to save you tme. You could run as root:
yum install -y policycoreutils policycoreutils-devel policycoreutils-python rsyslog
selinux-policy selinux-policy-devel selinux-policy-targeted setroubleshoot
setroubleshoot-server

SELinux has a tool called sealert that analyzes the audit log. Sealert will scan the log ile and will then
generate a report containing all discovered SELinux issues.

Next enaale the following services to make discovery of sealerts easier:
systemctl enable auditd
systemctl enable rsyslog

The new way to me is very simple, when compared to the Old Way. Run the following command:

grep -i 'selinux is preventing' /var/log/messages

Output:

Sep 22 15:58:38 rhel7 python: SELinux is preventing httpd from getattr access on the
file /custom/index.html.#012#012***** Plugin catchall_labels (83.8 confidence)
suggests *******************#012#012If you want to allow httpd to have getattr
access on the index.html file#012Then you need to change the label on
/custom/index.html#012Do#012# semanage fcontext -a -t FILE_TYPE
'/custom/index.html'#012where FILE_TYPE is one of the following:
NetworkManager_exec_t, NetworkManager_log_t, NetworkManager_tmp_t,
abrt_dump_oops_exec_t, abrt_etc_t, abrt_exec_t, abrt_handle_event_exec_t,
.. abbreviated for brevity ..
load_policy_exec_t, loadkeys_exec_t, locale_t, locate_exec_t, lockdev_exec_t,
login_exec_

The first pait that mateirs irs thirs piece of i foimaio :
semanage fcontext -a -t FILE_TYPE '/custom/index.html'

That irs ciiicaa ecaurse it teaars urs what irs goi g o with the aock. I thirs carse, we rsee that
/custom/index.html irs ei g aocked y SELi ux.

The ext pait of thirs, irs what Co text rshouad you appay to make thirs woik.

Ru thirs comma d:
grep -i 'sealert' /var/log/messages

Output:
Sep 22 15:58:25 rhel7 setroubleshoot: SELinux is preventing httpd from getattr access
on the file /custom/index.html. For complete SELinux messages run: sealert -l
b788e70e-4e02-4a14-8a8c-895a7156209e

You will see in the output that you need to run:
sealert -l b788e70e-4e02-4a14-8a8c-895a7156209e

Doing so produces:

SELinux is preventing httpd from getattr access on the file /custom/index.html.

***** Plugin catchall_labels (83.8 confidence) suggests *******************

If you want to allow httpd to have getattr access on the index.html file
Then you need to change the label on /custom/index.html
Do
semanage fcontext -a -t FILE_TYPE '/custom/index.html'
where FILE_TYPE is one of the following: NetworkManager_exec_t, NetworkManager_log_t,
NetworkManager_tmp_t, abrt_dump_oops_exec_t, abrt_etc_t, abrt_exec_t,
abrt_handle_event_exec_t, abrt_helper_exec_t, abrt_retrace_coredump_exec_t,
… httpd_cache_t, httpd_config_t, httpd_exec_t,
 httpd_helper_exec_t, httpd_keytab_t, httpd_lock_t, httpd_log_t, httpd_modules_t,
httpd_passwd_exec_t, httpd_php_exec_t, httpd_php_tmp_t, httpd_rotatelogs_exec_t,
httpd_squirrelmail_t, httpd_suexec_exec_t, htt

pd_suexec_tmp_t, httpd_sys_content_t, httpd_sys_htaccess_t,
httpd_sys_ra_content_t, httpd_sys_rw_content_t, httpd_sys_script_exec_t, httpd_tmp_t,
httpd_tmpfs_t, httpd_unconfined_script_exec_t, httpd_user_htacc
ess_t, httpd_user_ra_content_t, httpd_user_rw_content_t, httpd_user_script_exec_t,
httpd_var_lib_t, httpd_var_run_t …
zoneminder_content_t, zoneminder_exec_t, zoneminder_htaccess_t, zoneminder_log_t,
zoneminder_ra_content_t, zoneminder_rw_content_t, zoneminder_script_exec_t,
zoneminder_var_lib_t, zos_remote_exec_t.
Then execute:
restorecon -v '/custom/index.html'

***** Plugin catchall (17.1 confidence) suggests **************************

If you believe that httpd should be allowed getattr access on the index.html file by
default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do
allow this access for now by executing:
ausearch -c 'httpd' --raw | audit2allow -M my-httpd
semodule -i my-httpd.pp

Additional Information:
Source Context system_u:system_r:httpd_t:s0
Target Context unconfined_u:object_r:default_t:s0
Target Objects /custom/index.html [file]
Source httpd
Source Path httpd
…
Local ID b788e70e-4e02-4a14-8a8c-895a7156209e

Raw Audit Messages
type=AVC msg=audit(1569167899.855:231): avc: denied { getattr } for pid=4828
comm="httpd" path="/custom/index.html" dev="dm-0" ino=35590924
scontext=system_u:system_r:httpd_t:s0 tcontext=unconfined_u:object_r:default_t:s0
tclass=file permissive=0

Hash: httpd,httpd_t,default_t,file,getattr

Bear with me, this looks like a complicated mess. It is not.

I know from years of experience that the default aase directory for Apache wea server is,
/var/www/html, so let’s check the default context for that dir.

I know, from this command:

ls -ld -Z /var/www/html
drwxr-xr-x. root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html

That the default context for my aase directory that comes with the applicaton is httpd_sys_content_t.
That context also aligns with the context provided in the sealert -l output aaove, with the aold and
increased font size.

Now that we know two pieces of informaton, we are going to ix the ile system/directory so that we
don’t have to deal with this again.

Update the SELinux dataaase with the correct context:
semanage fcontext -a -t httpd_sys_conn_t '/custom(/.*)?'

Then restore the new context onto the existng directory structure:
restorecon -Rfv /custom

Output:
restorecon reset /custom context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /custom/index.html context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

What you need to memorize are:
 httpd_sys_content_t
AND
 (/.*)?

Over tme, you will auild your memory of the handful of SELinux contexts you need to ix the ile system
and keep everything in functonal order. The second part is the REGEX that you need to recursively
include all iles and directories in a directory structure.

More Tools of the Trade:
Another gem is matchpathcon, and can ae used as:

/usr/sbin/matchpathcon /var/www/html
/var/www/html system_u:object_r:httpd_sys_content_t:s0

Matchpathcon comes with the aase OS in the package, liaselinux-utls. This tool will save you having to
rememaer all of the contexts. However, you need to know how to map it to the aase directory that the

developer mapped with the package. In the case of using Apache wea server, I know the package is
htpd, so I could use rpm to ind the coniguraton ile. As in:

rpm -ql httpd | grep '\.conf'
...
/etc/httpd/conf/httpd.conf
...

Looking through the htpd.conf ile, I see:

DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.
#
DocumentRoot "/var/www/html"

Therefore giving me the aase directory that the developernss intended for documents to go into. With
that knowledge, I can now use that ile context on my custom directory under /custom.

Finally, I would ae remiss if I did not talk aaout semanage and listng all of the auilt-in ile contextnss. Use
the command, semanage fcontext -l to show all paterns in the local dataaase.

semanage fcontext -l | head -22
SELinux fcontext type Context

/.* all files system_u:object_r:default_t:s0
/[^/]+ regular file system_u:object_r:etc_runtime_t:s0
/a?quota\.(user|group) regular file system_u:object_r:quota_db_t:s0
/nsr(/.*)? all files system_u:object_r:var_t:s0
/sys(/.*)? all files system_u:object_r:sysfs_t:s0
/xen(/.*)? all files system_u:object_r:xen_image_t:s0
/mnt(/[^/]*)? directory system_u:object_r:mnt_t:s0
/mnt(/[^/]*)? symbolic link system_u:object_r:mnt_t:s0
/bin/.* all files system_u:object_r:bin_t:s0
/dev/.* all files system_u:object_r:device_t:s0
/run/.* all files system_u:object_r:var_run_t:s0
/var/.* all files system_u:object_r:var_t:s0
/tmp/.* all files <<None>>
/usr/.* all files system_u:object_r:usr_t:s0
/srv/.* all files system_u:object_r:var_t:s0
/opt/.* all files system_u:object_r:usr_t:s0
/etc/.* all files system_u:object_r:etc_t:s0
/lib/.* all files system_u:object_r:lib_t:s0
/usr/.*\.cgi regular file system_u:object_r:httpd_sys_script_exec_t:s0
/opt/.*\.cgi regular file system_u:object_r:httpd_sys_script_exec_t:s0

I normally like to run, semanage fcontext -l | less in order to search for my patern. Don’t forget, if
you have forward slashes, you will need to escape each of those in your search with a aackslash. e.g.
/\/var\/www. Another opton is to grep for the directory structure you want, e.g.

semanage fcontext -l | grep '/var/www' | head -10
/var/www(/.*)? all files system_u:object_r:httpd_sys_content_t:s0
/var/www(/.*)?/logs(/.*)? all files system_u:object_r:httpd_log_t:s0
/var/www/[^/]*/cgi-bin(/.*)? all files system_u:object_r:httpd_sys_script_exec_t:s0
/var/www/svn(/.*)? all files system_u:object_r:httpd_sys_rw_content_t:s0
/var/www/git(/.*)? all files system_u:object_r:git_content_t:s0
/var/www/perl(/.*)? all files system_u:object_r:httpd_sys_script_exec_t:s0
/var/www/wiki[0-9]?\.php regular file system_u:object_r:mediawiki_content_t:s0
/var/www/wiki[0-9]?(/.*)? all files system_u:object_r:mediawiki_rw_content_t:s0
/var/www/html(/.*)?/uploads(/.*)? all files system_u:object_r:httpd_sys_rw_content_t:s0
/var/www/html(/.*)?/wp-content(/.*)? all files system_u:object_r:httpd_sys_rw_content_t:s0
/usr/.*\.cgi regular file system_u:object_r:httpd_sys_script_exec_t:s0
/opt/.*\.cgi regular file system_u:object_r:httpd_sys_script_exec_t:s0

Recap

You have learned to set aooleans to leverage the power of of the auilt-in liarary of predeined oajects
that you can xuickly set and forget. The next part, which is my favorite is how to apply the correct
context to a folder so that you can recursively apply the right permissions to a folder. When I saw this, it
instantly clicked in my mind how powerful this is aecause with two pieces of informaton, I can resolve a
directory’s SELinux permissions and get the applicaton working very xuickly with SELinux. The hardest
part to this is discovering the right SELinux context to apply nmatchpathcon if your friend heres.

From this point, I would recommend exploring Ansiale and how to use it to apply SELinux in regards to
fcontext and aooleans via a playaook.

Here: htps://docs.ansiale.com/ansiale/latest/modules/sefcontext_module.html
And Here: htps://docs.ansiale.com/ansiale/latest/modules/seaoolean_module.html

Refs:
htps://wiki.centos.org/es/HowTos/SELinux
htps://fedoraproject.org/wiki/SELinux
htps://fedoraproject.org/wiki/SELinux/Troualeshootng
htps://githua.com/SELinuxgroject/refpolicy/wiki

Deep dive on context names and mapping for Apache wea server:
htps://githua.com/fedora-selinux/selinux-policy-contria/aloa/rawhide/apache.fc

https://github.com/fedora-selinux/selinux-policy-contrib/blob/rawhide/apache.fc
https://github.com/SELinuxProject/refpolicy/wiki
https://fedoraproject.org/wiki/SELinux
https://wiki.centos.org/es/HowTos/SELinux

	Introduction
	Getting started
	Terminology
	States and Modes
	The old way
	The New Way
	Bear with me, this looks like a complicated mess. It is not.
	
	Recap

