
How to securely isolate and execute
Doona from Kali Linux

Introduction
The motivation behind this paper is to explore using Doona that comes with Kali Linux. Doona is forked
from the Bruteforce Exploit Detector(BED) tool. In case you didn’t know, BED is a program which is
designed to check daemons for potential buffer overflows, format string bugs etc. Doona adds a
significant number of features/changes from the BED fork. The secure isolation comes from using the
private network from VirtualBox, here the 172.20.156.0/24 subnet. Private means it is Host-only and
cannot route outbound.

Requirements
If you see the following $ symbol on a command line to execute, what that means is that the command
is executed as a regular user, i.e. the Ubuntu user. Ignore the leading $ and execute the rest of the
command.

$ command to execute as a regular user

If you see a command line lead with the # symbol, then that means that the command is executed as the
root user. This implies you need to elevate to the root user before running the command, e.g. with: sudo
su – root.
command to execute as the root user

VirtualBox
Go to: https://www.virtualbox.org/wiki/Downloads and download VirtualBox.

The author is running on Ubuntu 18.04, so following to this URL:
https://www.virtualbox.org/wiki/Linux_Downloads

For Ubuntu, double click on the .deb file, i.e. virtualbox-5.2_5.2.0-118431-Ubuntu-zesty_amd64.deb,
and install VirtualBox on your local workstation.

Clean VirtualBox Networking

Run these two commands from a Terminal:

VBoxManage list natnetworks

VBoxManage list dhcpservers

Output:
NetworkName: 192.168.139-NAT

IP: 192.168.139.1
Network: 192.168.139.0/24

IPv6 Enabled: No

IPv6 Prefix: fd17:625c:f037:a88b::/64
DHCP Enabled: Yes

Enabled: Yes

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads

loopback mappings (ipv4)

 127.0.0.1=2

NetworkName: 192.168.139-NAT

IP: 192.168.139.3
NetworkMask: 255.255.255.0

lowerIPAddress: 192.168.139.101

upperIPAddress: 192.168.139.254
Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet0
IP: 172.20.0.3

NetworkMask: 255.255.255.0

lowerIPAddress: 172.20.0.101
upperIPAddress: 172.20.0.254

Enabled: Yes

NetworkName: HostInterfaceNetworking-vboxnet1

IP: 0.0.0.0

NetworkMask: 0.0.0.0
lowerIPAddress: 0.0.0.0

upperIPAddress: 0.0.0.0

Enabled: No

Now, delete ALL of the pre-installed VirtualBox networks (one at a time following the syntax below):

VBoxManage natnetwork remove --netname <NetworkName_from_above>

VBoxManage natnetwork remove --netname 192.168.139-NAT

repeat as many times as necessary to delete all of them.

VBoxManage dhcpserver remove --netname <DHCP_Server_NetworkName_from_above>

VBoxManage dhcpserver remove --netname 192.168.139-NAT

repeat as many times as necessary to delete all of them.

Add VirtualBox Networking

Now, add the new VirtualBox networks so the Kali Linux guides work.
VBoxManage natnetwork add \

 --netname 192.168.139-NAT \

 --network "192.168.139.0/24" \

 --enable --dhcp on

VBoxManage dhcpserver add \

 --netname 192.168.139-NAT \

 --ip 192.168.139.3 \

 --lowerip 192.168.139.101 \

 --upperip 192.168.139.254 \

 --netmask 255.255.255.0 \

 --enable

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0 \

 --ip 172.20.0.1 \

 --netmask 255.255.255.0

VBoxManage dhcpserver add \

 --ifname vboxnet0 \

 --ip 172.20.0.3 \

 --lowerip 172.20.0.101 \

 --upperip 172.20.0.254 \

 --netmask 255.255.255.0

VBoxManage dhcpserver modify \

 --ifname vboxnet0 \

 --enable

Vagrant
Go to: https://www.vagrantup.com/downloads.html, follow the appropriate link to your OS and 32 or

64 bit version representing your local workstation. Download.

For Ubuntu, double click on the .deb file, i.e. vagrant_2.0.1_x86_64.deb, and install Vagrant on your

local system.

Kali Linux and Damn Vulnerable Web Application (DVWA)

The author highly recommends to create a directory structure that is easy to navigate and find your

code. As an example, you could use something similar to:
${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Go ahead and make this structure with the following command (inside a Terminal):
$ mkdir –p ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

From a Terminal, change directory to:
$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Vagrantfile:

Inside of the kali-linux-vm directory, populate a new file with the exact name, “Vagrantfile”. Case

matters, uppercase the “V”. This file will contain both virtual machines for Kali Linux as well as setting up

the DVWA virtual machine. Aggregating both virtual machines into one file has saved the author a lot of

time. The coolness here is setting up the variables at the top of the Vagrantfile mimicing shell scripting

inside of a virtual machine (passed in with provision: shell). I tested using: `apt-get update && apt-get

upgrade -y`, but opted to take it out since it took over 45 minutes on my slower (old) hardware.
-*- mode: ruby -*-

vi: set ft=ruby :

$os_update = <<SCRIPT

apt-get update

SCRIPT

$install_doona = <<SCRIPT

apt-get install -y doona

SCRIPT

Vagrantfile API/syntax version.

VAGRANTFILE_API_VERSION = "2"

https://www.vagrantup.com/downloads.html

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

 config.vm.define "kali-linux-vagrant" do |conf|

 conf.vm.box = "kalilinux/rolling"

 # For Linux systems with the Wireless network, uncomment the line:

 conf.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line and comment out the Linux Wireless network:

 #conf.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)", auto_config: true

 conf.vm.hostname = "kali-linux-vagrant"

 conf.vm.provider "virtualbox" do |vb|

 vb.gui = true

 vb.memory = "4096"

 vb.cpus = "2"

 vb.customize ["modifyvm", :id, "--vram", "32"]

 vb.customize ["modifyvm", :id, "--accelerate3d", "off"]

 vb.customize ["modifyvm", :id, "--ostype", "Debian_64"]

 vb.customize ["modifyvm", :id, "--boot1", "dvd"]

 vb.customize ["modifyvm", :id, "--boot2", "disk"]

 vb.customize ["modifyvm", :id, "--audio", "none"]

 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]

 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]

 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]

 end

 conf.vm.provision "shell", inline: $os_update

 conf.vm.provision "shell", inline: $install_doona

 end

 config.vm.define "dvwa-vagrant" do |conf|

 conf.vm.box = "ubuntu/xenial64"

 conf.vm.hostname = "dvwa-vagrant"

 # For Linux systems with the Wireless network, uncomment the line:

 conf.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line and comment out the Linux Wireless network:

 #conf.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)", auto_config: true

 config.vm.network "forwarded_port", guest: 80, host: 8080, auto_correct: true

 config.vm.network "forwarded_port", guest: 3306, host: 3306, auto_correct: true

 conf.vm.provider "virtualbox" do |vb|

 vb.memory = "1024"

 vb.cpus = "2"

 vb.gui = false

 vb.customize ["modifyvm", :id, "--vram", "32"]

 vb.customize ["modifyvm", :id, "--accelerate3d", "off"]

 vb.customize ["modifyvm", :id, "--ostype", "Ubuntu_64"]

 vb.customize ["modifyvm", :id, "--boot1", "dvd"]

 vb.customize ["modifyvm", :id, "--boot2", "disk"]

 vb.customize ["modifyvm", :id, "--audio", "none"]

 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]

 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]

 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]

 end

 conf.vm.provision :shell, path: "bootstrap.sh"

 end

end

Save and write this file.

Inside of the kali-linux-vm directory, populate a new file with the exact name, “bootstrap.sh”. Case

matters, all lowercase.

bootstrap.sh (include the shebang in your file, the first line with ‘#!/usr/bin/env bash’):

#!/usr/bin/env bash

PHP_FPM_PATH_INI='/etc/php/7.0/fpm/php.ini'

PHP_FPM_POOL_CONF='/etc/php/7.0/fpm/pool.d/www.conf'

MYSQL_ROOT_PW='Assword12345'

MYSQL_dvwa_user='dvwa_root'

MYSQL_dvwa_password='sunshine'

DVWA_admin_password='admin'

recaptcha_public_key='u8392ihj32kl8hujalkshuil32'

recaptcha_private_key='89ry8932873832lih32ilj32'

install_base() {

 add-apt-repository -y ppa:nginx/stable

 sudo apt-get update

 sudo apt-get dist-upgrade -y

 sudo apt-get install -y nginx mariadb-server mariadb-client php php-common php-cgi php-fpm

php-gd php-cli php-pear php-mcrypt php-mysql php-gd git vim

}

config_mysql(){

 mysqladmin -u root password "${MYSQL_ROOT_PW}"

 # Config the mysql config file for root so it doesn't prompt for password.

 # Also sets pw in plain text for easy access.

 # Don't forget to change the password here!!

cat <<EOF > /root/.my.cnf

[client]

user="root"

password="${MYSQL_ROOT_PW}"

EOF

 mysql -BNe "drop database if exists dvwa;"

 mysql -BNe "CREATE DATABASE dvwa;"

 mysql -BNe "GRANT ALL ON *.* TO '"${MYSQL_dvwa_user}"'@'localhost' IDENTIFIED BY

'"${MYSQL_dvwa_password}"';"

 service mysql restart

}

config_php(){

 ##Config PHP FPM INI to disable some security settings

 sed -i 's/^;cgi.fix_pathinfo.*$/cgi.fix_pathinfo = 0/g' ${PHP_FPM_PATH_INI}

 sed -i 's/allow_url_include = Off/allow_url_include = On/g' ${PHP_FPM_PATH_INI}

 sed -i 's/allow_url_fopen = Off/allow_url_fopen = On/g' ${PHP_FPM_PATH_INI}

 sed -i 's/safe_mode = On/safe_mode = Off/g' ${PHP_FPM_PATH_INI}

 echo "magic_quotes_gpc = Off" >> ${PHP_FPM_PATH_INI}

 sed -i 's/display_errors = Off/display_errors = On/g' ${PHP_FPM_PATH_INI}

 ##explicitly set pool options (these are defaults in ubuntu 16.04 so i'm commenting them out.

If they are not defaults for you try uncommenting these

 #sed -i 's/^;security.limit_extensions.*$/security.limit_extensions

= .php .php3 .php4 .php5 .php7/g' /etc/php/7.0/fpm/pool.d/www.conf

 #sed -i 's/^listen.owner.*$/listen.owner = www-data/g' /etc/php/7.0/fpm/pool.d/www.conf

 #sed -i 's/^listen.group.*$/listen.group = www-data/g' /etc/php/7.0/fpm/pool.d/www.conf

 #sed -i 's/^;listen.mode.*$/listen.mode = 0660/g' /etc/php/7.0/fpm/pool.d/www.conf

 systemctl restart php7.0-fpm

}

config_nginx(){

cat << 'EOF' > /etc/nginx/sites-enabled/default

server

{

 listen 80;

 root /var/www/html;

 index index.php index.html index.htm;

 #server_name localhost

 location "/"

 {

 index index.php index.html index.htm;

 #try_files $uri $uri/ =404;

 }

 location ~ \.php$

 {

 include /etc/nginx/fastcgi_params;

 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;

 fastcgi_index index.php;

 fastcgi_param SCRIPT_FILENAME $request_filename;

 }

}

EOF

 systemctl restart nginx

}

install_dvwa(){

 if [[! -d "/var/www/html"]];

 then

 mkdir -p /var/www;

 ln -s /usr/share/nginx/html /var/www/html;

 chown -R www-data. /var/www/html;

 fi

 cd /var/www/html

 rm -rf /var/www/html/.[!.]*

 rm -rf /var/www/html/*

 git clone https://github.com/ethicalhack3r/DVWA.git ./

 chown -R www-data. ./

 cp config/config.inc.php.dist config/config.inc.php

 ### chmod uploads and log file to be writable by nobody

 chmod 777 ./hackable/uploads/

 chmod 777 ./external/phpids/0.6/lib/IDS/tmp/phpids_log.txt

 ## change the values in the config to match our setup (these are what you need to update!

 sed -i '/db_user/ s/root/'${MYSQL_dvwa_user}'/' /var/www/html/config/config.inc.php

 sed -i '/db_password/ s/p@ssw0rd/'${MYSQL_dvwa_password}'/'

/var/www/html/config/config.inc.php

 sed -i "/recaptcha_public_key/ s/''/'"${recaptcha_public_key}"'/"

/var/www/html/config/config.inc.php

 sed -i "/recaptcha_private_key/ s/''/'"${recaptcha_private_key}"'/"

/var/www/html/config/config.inc.php

}

update_mysql_user_pws(){

The mysql passwords are set via /usr/share/nginx/html/dvwa/includes/DBMS/MySQL.php.

If you edit this every time they are reset it will reset to those.

Otherwise you can do a sql update statement to update them all.

The issue is the users table doesn't get created until you click that button T_T to init.

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'admin';"

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'gordonb';"

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = '1337';"

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'pablo';"

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user = 'smithy';"

sed -i '/admin/ s/password/'${DVWA_admin_password}'/g' /var/www/html/dvwa/includes/DBMS/MySQL.php

sed -i '/gordonb/ s/abc123/'${DVWA_admin_password}'/g' /var/www/html/dvwa/includes/DBMS/MySQL.php

sed -i '/1337/ s/charley/'${DVWA_admin_password}'/g' /var/www/html/dvwa/includes/DBMS/MySQL.php

sed -i '/pablo/ s/letmein/'${DVWA_admin_password}'/g' /var/www/html/dvwa/includes/DBMS/MySQL.php

sed -i '/smithy/ s/password/'${DVWA_admin_password}'/g'

/var/www/html/dvwa/includes/DBMS/MySQL.php

}

install_base

config_mysql

install_dvwa

update_mysql_user_pws

config_php

config_nginx

Save and write this file.

If you have issues with copying and pasting the above file, you could use wget, i.e.
Make sure the bootstrap.sh file ends up in the same directory as the Vagrantfile.
I just googled for the string, “DVWA AND bootstrap.sh”, case sensitive here with the AND.

$ wget https://github.com/lookcrabs/DVWA-Vagrant/blob/master/bootstrap.sh

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Then run (inside the directory kali-linux-vm):
$ vagrant up

This will download the appropriate images and start the virtual machines.

Once running, through the VirtuaBox GUI, login as root. Password is “toor”, root backwards. Edit the
following file:

/etc/ssh/sshd_config

And change the line:

#PermitRootLogin prothibit-password

To:

PermitRootLogin yes

Then restart the ssh daemon:

kill –HUP $(pgrep sshd)

Notice, you are on a Bridged adapter, this will open the instance to allow root to ssh in with the most
unsecure password in the world. Only make this change (allowing root to login via SSH) if you require
root SSH access. You can change the root user’s password, which is highly recommended.

For the DVWA instance, I would first run ‘vagrant status’ to capture the name

that vagrant is using for the running instance.

vagrant status

Choose the second network adapter, it should look like:

Current machine states:

kali-linux-vagrant running (virtualbox)

dvwa-vagrant running (virtualbox)

This environment represents multiple VMs. The VMs are all listed

above with their current state. For more information about a specific

VM, run `vagrant status NAME`.

From there, log into the DVWA instance with:

$ vagrant ssh dvwa-vagrant

And then get the current IP address.

$ ip a

Choose the second network adapter, it should look like:

ubuntu@dvwa:~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

group default qlen 1

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP group default qlen 1000

 link/ether 02:53:17:3c:de:80 brd ff:ff:ff:ff:ff:ff

 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3

 valid_lft forever preferred_lft forever

 inet6 fe80::53:17ff:fe3c:de80/64 scope link

 valid_lft forever preferred_lft forever

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast

state UP group default qlen 1000

 link/ether 08:00:27:f0:77:2d brd ff:ff:ff:ff:ff:ff

 inet 172.20.156.76/24 brd 172.20.156.255 scope global enp0s8

 valid_lft forever preferred_lft forever

 inet6 fe80::a00:27ff:fef0:772d/64 scope link

 valid_lft forever preferred_lft forever

The author’s home wireless network uses 172.20.156.0/24 as the network range. Therefore, the
adapter, enp0s8 is what he is looking for. The IP to use as a target is 172.20.156.76. Write down your
value.

doona (Kali-Linux version)
Fire up both vagrant boxes of Kali-Linux and DVWA with vagrant up.
Login to kali linux. Username: root, Password: toor.

Open a terminal and I would recommend to at least look at the help page of Doona with the command:
doona -h

This might seem silly, but the help page gives us a list of all of the parameters we can pass to the
executable, in this case, a Perl script, named doona.pl. I am pointing this out because we can see the
code if we need to by running:
$ less $(which doona)

Let us launch the script at our target (DVWA) which we know is on 172.20.156.76
With the command:
$ doona -m HTTP -t 172.20.156.76 -p 80

The left most column tells us the sequence number this is cycling through, the middle column with
[<attack>] tells us exactly what attack is running, and the right most column (digits) tells us how many
vulnerabilities the tools has discovered.

The above image is what the tool looks like after running for four days. The test system has 8 cores,
running at 2.6GHz. I’m pointing this out because we know that the install of DVWA has many
vulnerabilities, but looking above, this tools has discovered 126,893 vulnerabilities. I would love to know
what this tool finds when running against something like SharePoint or another modern web server that
is mis-configured.

Conclusion
By following this paper, you have setup a secure lab that is flexible enough to test many different
configurations/tests. Doona is a great tool. The above shows how to run it and how powerful the results
are from the output of the tool. For initial runs, I would recommend to tack on the parameter of ‘-M
500’ to limit the count of how many tests are performed. Running the tool on the Host-only network
protects the tests and your work. Make sure – as a final warning – that you do not alter this pattern. If
you perform security tests on anything other than assets that you own AND contained within your own
network, you open yourself to legal troubles.

