
How to securely isolate and execute
Scapy from Kali Linux, part one

Version 0.1, Last Updated: Sep 3

Table of Contents
1. Introduction. 1

2. Requirements . 2

2.1. Writing Conventions . 2

2.2. VirtualBox. 2

2.2.1. Clean VirtualBox Networking . 2

2.2.2. Add VirtualBox Networking . 4

2.3. Vagrant . 4

2.4. Kali Linux and Damn Vulnerable Web Application (DVWA) . 5

2.4.1. Vagrantfile. 5

2.4.2. bootstrap.sh . 7

3. Scapy . 13

3.1. Scapy Python Library install . 19

4. Conclusion . 20

5. Appendix . 21

Chapter 1. Introduction
The motivation behind part one of this series is to explore using the tool Scapy that comes with Kali
Linux.

This is only an overview to give the audience a taste of what is in the tool.

What is Scapy:

Scapy is a Python program that enables the user to send, sniff, dissect, and forge network packets.
This capability allows construction of tools that can probe, scan or attack target networks.

What makes Scapy so darn awesome:

"First, with most other networking tools, you won’t build something the author did not imagine.
These tools have been built for a specific goal and can’t deviate much from it. For example, an ARP
cache poisoning program won’t let you use double 802.1q encapsulation. Or try to find a program
that can send, say, an ICMP packet with padding (I said padding, not payload, see?). In fact, each
time you have a new need, you have to build a new tool.

Second, they usually confuse decoding and interpreting. Machines are good at decoding and can
help human beings with that. Interpretation is reserved for human beings. Some programs try to
mimic this behavior. For instance they say “this port is open” instead of “I received a SYN-ACK”.
Sometimes they are right. Sometimes not. It’s easier for beginners, but when you know what you’re
doing, you keep on trying to deduce what really happened from the program’s interpretation to
make your own, which is hard because you lost a big amount of information. And you often end up
using tcpdump -xX to decode and interpret what the tool missed.

Third, even programs which only decode do not give you all the information they received. The
network’s vision they give you is the one their author thought was sufficient. But it is not complete,
and you have [now injected] a bias. For instance, do you know a tool that reports the Ethernet
padding?

Scapy tries to overcome those problems. It enables you to build exactly the packets you want. Even
if I think stacking a 802.1q layer on top of TCP has no sense, it may have some for somebody else
working on some product I don’t know. Scapy has a flexible model that tries to avoid such arbitrary
limits. You’re free to put any value you want in any field you want and stack them like you want.
You’re an adult after all.

In fact, it’s like building a new tool each time, but instead of dealing with a hundred line C program,
you only write 2 lines of Scapy." - Offical Docs

Scapy can be run in two different modes, either interactively from a terminal or written into a
Python script.

Let’s get started with our isolated testing environment.

1

Chapter 2. Requirements

2.1. Writing Conventions
If you see the following $ symbol on a command line to execute, what that means is that the
command is executed as a regular user; meaning an account that does not have administrative
privileges. Ignore the leading $ and execute the rest of the command.

$ command to execute as a regular user

If you see a command line lead with the # symbol, then that means that the command is executed
as the root user. This implies you need to elevate to the root user before running the command, e.g.
with: sudo su – root.

command to execute as the root user

2.2. VirtualBox
Go to: https://www.virtualbox.org/wiki/Downloads and download VirtualBox.

The author is running on Ubuntu 18.04, so following to this URL: https://www.virtualbox.org/wiki/
Linux_Downloads

For Ubuntu, double click on the .deb file, i.e. virtualbox-5.2_5.2.0-118431-Ubuntu-zesty_amd64.deb,
and install VirtualBox on your local workstation.

2.2.1. Clean VirtualBox Networking

This section is here in case you already had virtualbox installed from before. The intent is to clean
up the previous networking. If you do not need to do this, skip to Add VirtualBox Networking

Run these two commands from a Terminal:

$ VBoxManage list natnetworks
$ VBoxManage list dhcpservers

Output (example):

NetworkName: 192.168.139-NAT
IP: 192.168.139.1
Network: 192.168.139.0/24
IPv6 Enabled: No
IPv6 Prefix: fd17:625c:f037:2::/64
DHCP Enabled: Yes

2

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads

Enabled: Yes
loopback mappings (ipv4)
 127.0.0.1=2

NetworkName: 192.168.139-NAT
Dhcpd IP: 192.168.139.3
LowerIPAddress: 192.168.139.101
UpperIPAddress: 192.168.139.254
NetworkMask: 255.255.255.0
Enabled: Yes
Global Configuration:
 minLeaseTime: default
 defaultLeaseTime: default
 maxLeaseTime: default
 Forced options: None
 Suppressed opts.: None
 1/legacy: 255.255.255.0
Groups: None
Individual Configs: None

NetworkName: HostInterfaceNetworking-vboxnet0
Dhcpd IP: 172.20.0.3
LowerIPAddress: 172.20.0.101
UpperIPAddress: 172.20.0.254
NetworkMask: 255.255.255.0
Enabled: Yes
Global Configuration:
 minLeaseTime: default
 defaultLeaseTime: default
 maxLeaseTime: default
 Forced options: None
 Suppressed opts.: None
 1/legacy: 255.255.255.0
Groups: None
Individual Configs: None

Now, delete ALL of the pre-installed VirtualBox networks (one at a time following the syntax
below):

VBoxManage natnetwork remove --netname <NetworkName_from_above>
VBoxManage natnetwork remove --netname 192.168.139-NAT

Repeat as many times as necessary to delete all of them.

Now, delete ALL of the pre-installed DHCP services:

VBoxManage dhcpserver remove --netname <DHCP_Server_NetworkName_from_above>

3

VBoxManage dhcpserver remove --netname 192.168.139-NAT

Repeat as many times as necessary to delete all of them.

2.2.2. Add VirtualBox Networking

Now, add the new VirtualBox networks so the Kali Linux guides work.

VBoxManage natnetwork add \
 --netname 192.168.139-NAT \
 --network "192.168.139.0/24" \
 --enable --dhcp on

VBoxManage dhcpserver add \
 --netname 192.168.139-NAT \
 --ip 192.168.139.3 \
 --lowerip 192.168.139.101 \
 --upperip 192.168.139.254 \
 --netmask 255.255.255.0 \
 --enable

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0 \
 --ip 172.20.0.1 \
 --netmask 255.255.255.0

VBoxManage dhcpserver add \
 --ifname vboxnet0 \
 --ip 172.20.0.3 \
 --lowerip 172.20.0.101 \
 --upperip 172.20.0.254 \
 --netmask 255.255.255.0

VBoxManage dhcpserver modify \
 --ifname vboxnet0 \
 --enable

VirtualBox install complete.

2.3. Vagrant
Go to: https://www.vagrantup.com/downloads.html, follow the appropriate link to your OS and 32
or 64 bit version representing your local workstation. Download.

For Ubuntu, double click on the .deb file, i.e. vagrant_2.0.1_x86_64.deb, and install Vagrant on your
local system.

4

https://www.vagrantup.com/downloads.html

NOTE Update vagrant vm: vagrant box update

2.4. Kali Linux and Damn Vulnerable Web Application
(DVWA)
The author highly recommends to create a directory structure that is easy to navigate and find your
code. As an example, you could use something similar to:

${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Go ahead and make this structure with the following command (inside a Terminal):

$ mkdir –p ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

2.4.1. Vagrantfile

Inside of the kali-linux-vm directory, populate a new file with the exact name, “Vagrantfile”. Case
matters, uppercase the “V”. This file will contain both virtual machines for Kali Linux as well as
setting up the DVWA virtual machine. Aggregating both virtual machines into one file has saved the
author a lot of time. The coolness here is setting up the variables at the top of the Vagrantfile
mimicing shell scripting inside of a virtual machine (passed in with provision: shell). I tested using:
apt-get update && apt-get upgrade -y, but opted to take it out since it took over 45 minutes on my
slower (old) hardware. See comment about downloading this file immediately preceding the code
block.

-*- mode: ruby -*-
vi: set ft=ruby :

$os_update = <<SCRIPT
apt-get update
SCRIPT

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.define "kali-linux-vagrant" do |conf|
 conf.vm.box = "kalilinux/rolling"

 # For Linux systems with the Wireless network, uncomment the line:

5

 conf.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line and comment out the Linux
Wireless network:
 #conf.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)",
auto_config: true

 conf.vm.hostname = "kali-linux-vagrant"
 conf.vm.provider "virtualbox" do |vb|
 vb.gui = true
 vb.memory = "4096"
 vb.cpus = "2"
 vb.customize ["modifyvm", :id, "--vram", "32"]
 vb.customize ["modifyvm", :id, "--accelerate3d", "off"]
 vb.customize ["modifyvm", :id, "--ostype", "Debian_64"]
 vb.customize ["modifyvm", :id, "--boot1", "dvd"]
 vb.customize ["modifyvm", :id, "--boot2", "disk"]
 vb.customize ["modifyvm", :id, "--audio", "none"]
 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
 end
 conf.vm.provision "shell", inline: $os_update
 end

 config.vm.define "dvwa-vagrant" do |conf|

 conf.vm.box = "ubuntu/xenial64"

 conf.vm.hostname = "dvwa-vagrant"

 # For Linux systems with the Wireless network, uncomment the line:
 conf.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line and comment out the Linux
Wireless network:
 #conf.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)",
auto_config: true

 config.vm.network "forwarded_port", guest: 80, host: 8080, auto_correct: true
 config.vm.network "forwarded_port", guest: 3306, host: 3306, auto_correct:
true

 conf.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 vb.cpus = "2"
 vb.gui = false
 vb.customize ["modifyvm", :id, "--vram", "32"]
 vb.customize ["modifyvm", :id, "--accelerate3d", "off"]
 vb.customize ["modifyvm", :id, "--ostype", "Ubuntu_64"]
 vb.customize ["modifyvm", :id, "--boot1", "dvd"]

6

 vb.customize ["modifyvm", :id, "--boot2", "disk"]
 vb.customize ["modifyvm", :id, "--audio", "none"]
 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
 end
 conf.vm.provision "shell", inline: $os_update
 conf.vm.provision :shell, path: "bootstrap.sh"
 end
end

Save and write this file.

You can also download from:

$ curl -o Vagrantfile http://securityhardening.com/files/Vagrantfile_20200928.txt

2.4.2. bootstrap.sh

Inside of the kali-linux-vm directory, populate a new file with the exact name, bootstrap.sh. Case
matters, all lowercase. See comment about downloading this file immediately preceding the code
block. bootstrap.sh (include the shebang in your file: the first line with #!/usr/bin/env bash):

#!/usr/bin/env bash
PHP_FPM_PATH_INI='/etc/php/7.0/fpm/php.ini'
PHP_FPM_POOL_CONF='/etc/php/7.0/fpm/pool.d/www.conf'
MYSQL_ROOT_PW='Assword12345'
MYSQL_dvwa_user='dvwa'
MYSQL_dvwa_password='sunshine'
DVWA_admin_password='admin'
recaptcha_public_key='u8392ihj32kl8hujalkshuil32'
recaptcha_private_key='89ry8932873832lih32ilj32'

install_base() {
 add-apt-repository -y ppa:nginx/stable
 sudo apt-get update
 sudo apt-get dist-upgrade -y
 sudo apt-get install -y \
 nginx \
 mariadb-server \
 mariadb-client \
 php \
 php-common \
 php-cgi \
 php-fpm \
 php-gd \
 php-cli \

7

 php-pear \
 php-mcrypt \
 php-mysql \
 php-gd \
 git \
 vim
}

config_mysql(){
 mysqladmin -u root password "${MYSQL_ROOT_PW}"
Config the mysql config file for root so it doesn't prompt for password.
Also sets pw in plain text for easy access.
Don't forget to change the password here!!

cat <<EOF > /root/.my.cnf
[client]
user="root"
password="${MYSQL_ROOT_PW}"
EOF
 mysql -BNe "drop database if exists dvwa;"
 mysql -BNe "CREATE DATABASE dvwa;"
 mysql -BNe "GRANT ALL ON *.* TO '"${MYSQL_dvwa_user}"'@'localhost' IDENTIFIED BY
'"${MYSQL_dvwa_password}"';"

 systemctl enable mysql
 systemctl restart mysql
 sleep 2
}

config_php(){
 ## Config PHP FPM INI to disable some security settings:

 sed -i 's/^;cgi.fix_pathinfo.*$/cgi.fix_pathinfo = 0/g' ${PHP_FPM_PATH_INI}
 sed -i 's/allow_url_include = Off/allow_url_include = On/g' ${PHP_FPM_PATH_INI}
 sed -i 's/allow_url_fopen = Off/allow_url_fopen = On/g' ${PHP_FPM_PATH_INI}
 sed -i 's/safe_mode = On/safe_mode = Off/g' ${PHP_FPM_PATH_INI}
 echo "magic_quotes_gpc = Off" >> ${PHP_FPM_PATH_INI}
 sed -i 's/display_errors = Off/display_errors = On/g' ${PHP_FPM_PATH_INI}

 ## explicitly set pool options
 ## (these are defaults in ubuntu 16.04 so i'm commenting them out.
 ## If they are not defaults for you try uncommenting these)
 #sed -i 's/^;security.limit_extensions.*$/security.limit_extensions = \
 #.php .php3 .php4 .php5 .php7/g' /etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^listen.owner.*$/listen.owner = www-data/g'
/etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^listen.group.*$/listen.group = www-data/g'
/etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^;listen.mode.*$/listen.mode = 0660/g' /etc/php/7.0/fpm/pool.d/www.conf

8

 systemctl restart php7.0-fpm
}

config_nginx(){

cat << 'EOF' > /etc/nginx/sites-enabled/default
server
{
 listen 80;
 root /var/www/html;
 index index.php index.html index.htm;
 #server_name localhost
 location "/"
 {
 index index.php index.html index.htm;
 #try_files $uri $uri/ =404;
 }

 location ~ \.php$
 {
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $request_filename;
 }
}
EOF

 systemctl restart nginx
}

install_dvwa(){

 if [[! -d "/var/www/html"]];
 then
 mkdir -p /var/www;
 ln -s /usr/share/nginx/html /var/www/html;
 chown -R www-data. /var/www/html;
 fi

 cd /var/www/html
 rm -rf /var/www/html/.[!.]*
 rm -rf /var/www/html/*
 git clone https://github.com/ethicalhack3r/DVWA.git ./
 chown -R www-data. ./
 cp config/config.inc.php.dist config/config.inc.php

 ### chmod uploads and log file to be writable by nobody

9

 chmod 777 ./hackable/uploads/
 chmod 777 ./external/phpids/0.6/lib/IDS/tmp/phpids_log.txt

 ## change the values in the config to match our setup (these are what you need to
update!
 sed -i '/db_user/ s/root/'${MYSQL_dvwa_user}'/'
/var/www/html/config/config.inc.php
 sed -i '/db_password/ s/p@ssw0rd/'${MYSQL_dvwa_password}'/'
/var/www/html/config/config.inc.php
 sed -i "/recaptcha_public_key/ s/''/'"${recaptcha_public_key}"'/"
/var/www/html/config/config.inc.php
 sed -i "/recaptcha_private_key/ s/''/'"${recaptcha_private_key}"'/"
/var/www/html/config/config.inc.php

}

update_mysql_user_pws(){
The mysql passwords are set via /usr/share/nginx/html/dvwa/includes/DBMS/MySQL.php.
If you edit this every time they are reset it will reset to those.
Otherwise you can do a sql update statement to update them all (they are just md5's
of the string.
The issue is the users table doesn't get created until you click that button T_T to
init.

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'admin';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'gordonb';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'1337';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'pablo';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'smithy';"

sed -i '/admin/ s/password/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/gordonb/ s/abc123/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/1337/ s/charley/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/pablo/ s/letmein/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/smithy/ s/password/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
}

install_base
config_mysql

10

install_dvwa
update_mysql_user_pws
config_php
config_nginx

Save and write this file.

If you have issues with copying and pasting the above file because code blocks in PDFs always copy
correctly [NOT!], you could use curl, i.e. Make sure the bootstrap.sh file ends up in the same
directory as the Vagrantfile.

$ curl -o bootstrap.sh http://securityhardening.com/files/bootstrap_sh_20200928.txt

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Then run (inside the directory kali-linux-vm):

$ vagrant up

This will download the appropriate images and start the virtual machines. Once running, through
the VirtuaBox GUI, login as root. Password is “toor”, root backwards. Edit the following file:
/etc/ssh/sshd_config

And change the line: #PermitRootLogin prothibit-password To: PermitRootLogin yes Meaning strip
the comment out on the beginning of the line and alter prohibit-password to yes.

Then restart the ssh daemon:

kill –HUP $(pgrep sshd)

Notice, you are on a Bridged adapter, this will open the instance to allow root to ssh in with the
most unsecure password in the world. Only make this change (allowing root to login via SSH) if you
require root SSH access. You can change the root user’s password, which is highly recommended.

For the DVWA instance, I would first run ‘vagrant status’ to capture the name that vagrant is using
for the running instance.

vagrant status

Choose

Current machine states:

11

kali-linux-vagrant running (virtualbox)
dvwa-vagrant running (virtualbox)

This environment represents multiple VMs. The VMs are all listed above with their current state.
For more information about a specific VM, run vagrant status NAME.

From there, log into the DVWA instance with:

$ vagrant ssh dvwa-vagrant

And then get the current IP address.

$ ip a

Choose the second network adapter, it should look like:

ubuntu@dvwa:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
 link/ether 02:53:17:3c:de:80 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::53:17ff:fe3c:de80/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
 link/ether 08:00:27:f0:77:2d brd ff:ff:ff:ff:ff:ff
 inet 172.20.156.76/24 brd 172.20.156.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fef0:772d/64 scope link
 valid_lft forever preferred_lft forever

The test network used for this paper uses 172.20.156.0/24 as the network range [shown here in
section 3]. Therefore, the adapter, enp0s8 is what he is looking for. The IP to use as a target is
172.20.156.76. Write down your value.

12

Chapter 3. Scapy
To understand what we are doing here, the official documentation covers this best. See Appendix
for notes. Bear with the author, these concepts are important to understand.

Probe once, interpret many

"Network discovery is blackbox testing. When probing a network, many stimuli are sent while only
a few of them are answered. If the right stimuli are chosen, the desired information may be
obtained by the responses or the lack of responses. Unlike many tools, Scapy gives all the
information, i.e. all the stimuli sent and all the responses received. Examination of this data will
give the user the desired information. When the dataset is small, the user can just dig for it. In other
cases, the interpretation of the data will depend on the point of view taken. Most tools choose the
viewpoint and discard all the data not related to that point of view. Because Scapy gives the
complete raw data, that data may be used many times allowing the viewpoint to evolve during
analysis. For example, a TCP port scan may be probed and the data visualized as the result of the
port scan. The data could then also be visualized with respect to the TTL of response packet. A new
probe need not be initiated to adjust the viewpoint of the data." - Officicial Docs

Scapy decodes, it does not interpret

"A common problem with network probing tools is they try to interpret the answers received
instead of only decoding and giving facts. Reporting something like Received a TCP Reset on port 80
is not subject to interpretation errors. Reporting Port 80 is closed is an interpretation that may be
right most of the time but wrong in some specific contexts the tool’s author did not imagine. For
instance, some scanners tend to report a filtered TCP port when they receive an ICMP destination
unreachable packet. This may be right, but in some cases, it means the packet was not filtered by
the firewall but rather there was no host to forward the packet to.

Interpreting results can help users that don’t know what a port scan is but it can also make more
harm than good, as it injects bias into the results. What can tend to happen is that so that they can
do the interpretation themselves, knowledgeable users will try to reverse engineer the tool’s
interpretation to derive the facts that triggered that interpretation. Unfortunately, much
information is lost in this operation." - Official Docs

Without further ado, let us get into the application.

13

1. Open a terminal

2. launch Scapy by typing into the terminal, scapy

This is the base page when you launch scapy. To exit at any time, just depress the keys, CTRL + D to
exit out of Python.

Run the command lsc() to see a list of all commands available in Scapy. Think of lsc as List
Commands.

14

Part two of the lsc list.

Next, run the ls() command. As we can see above, there are a lot of layers in this tool we can run
the tool against.

From a cursory glance, the Layers the author is focused on at the moment are:

• DNS

• ICMP

• IP

15

• NTP

• Packet

• Raw

• TCP

• UDP

• X509_Validity

Run: ls(DNS)

16

Run: ls(ICMP)

Run: ls(IP)

Run: ls(TCP)

17

Run: ls(Raw)

Run: ls(UDP)

18

Run: ls(X509_Validity)

What we are looking at here are all of the fields that are available as inputs for a programmer.
When the author saw this, he was blown away with the amount of detail scapy provides. As a
reminder, ths paper is just an overview and future papers will cover programs and execution of
code.

Let’s move on to the next section, in case you want to start programming with scapy in python3
now.

3.1. Scapy Python Library install
Simply run in a terminal [with Kali, you should be logged in as root]:

apt-get update
apt-get install python3-pip
pip3 install scapy

The above is what you will use if you want to write your own, or import other people’s programs to
run scapy against your target systems/domains.

19

Chapter 4. Conclusion
Scapy is a powerful tool that allows detailed testing of many components of your network. Part of
the power is in the flexibility of this tool. One awesome feature is the ability to re-use information
that it has already discovered without having to query the target a second time. The sheer amount
of functions and methods pre-packaged in scapy are mind staggering. This tool is a blessing to the
Cyber Security communitiy and needs to be recognized by more professionals as a tool they
routinely use (in and out of professional settings [meaning at work and in their home labs]).

The author cannot wait to start using this tool in a professional capacity and introduce to new
clients and colleagues.

Keep your eyes sharp for Part Two of this series.

20

Chapter 5. Appendix
References

https://www.kali.org/tools/scapy/

https://scapy.net/

Official Docs: https://scapy.readthedocs.io/en/latest/introduction.html

https://thepacketgeek.com/scapy/building-network-tools/

source code: https://github.com/secdev/scapy

iPython tutorial with scapy: https://github.com/secdev/scapy/blob/master/doc/notebooks/
Scapy%20in%2015%20minutes.ipynb

21

https://www.kali.org/tools/scapy/
https://scapy.net/
https://scapy.readthedocs.io/en/latest/introduction.html
https://thepacketgeek.com/scapy/building-network-tools/
https://github.com/secdev/scapy
https://github.com/secdev/scapy/blob/master/doc/notebooks/Scapy%20in%2015%20minutes.ipynb
https://github.com/secdev/scapy/blob/master/doc/notebooks/Scapy%20in%2015%20minutes.ipynb

	How to securely isolate and execute Scapy from Kali Linux, part one
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Requirements
	2.1. Writing Conventions
	2.2. VirtualBox
	2.2.1. Clean VirtualBox Networking
	2.2.2. Add VirtualBox Networking

	2.3. Vagrant
	2.4. Kali Linux and Damn Vulnerable Web Application (DVWA)
	2.4.1. Vagrantfile
	2.4.2. bootstrap.sh

	Chapter 3. Scapy
	3.1. Scapy Python Library install

	Chapter 4. Conclusion
	Chapter 5. Appendix

