This site is dedicated to sharing information about the practice,
ideas, concepts and patterns regarding computer security.

[ow to securely isolate and execute
Netdiscover from Kali Linux

Version 0.1, Last Updated: 2nd Sep, 2023

Table of Contents

1. Introduction
2. Requirements
2.1. Writing Conventions
2.2. VirtualBox
2.2.1. Clean VirtualBox Networking
2.2.2. Add VirtualBox Networking
2.3. Vagrant
2.4. Kali Linux and Damn Vulnerable Web Application (DVWA)
2.4.1. Vagrantfile
2.4.2. bootstrap.sh
3. Netdiscover
3.1. Default scan with a subnet range
3.2. Scan with subnet ranges in a file
3.3. Netdiscover Passive mode
4. Conclusion

5. Appendix

N U1 U1 o R NN NN

[Y S S T N O Y
O © o g9 o W

Chapter 1. Introduction

The motivation behind this paper is to explore using the tool Netdiscover that comes with Kali
Linux.

Chapter 2. Requirements

2.1. Writing Conventions

If you see the following $ symbol on a command line to execute, what that means is that the
command is executed as a regular user; meaning an account that does not have administrative
privileges. Ignore the leading $ and execute the rest of the command.

$ command to execute as a regular user

If you see a command line lead with the # symbol, then that means that the command is executed
as the root user. This implies you need to elevate to the root user before running the command, e.g.
with: sudo su [root.

command to execute as the root user

2.2. VirtualBox

Go to: https://www.virtualbox.org/wiki/Downloads and download VirtualBox.

The author is running on Ubuntu 18.04, so following to this URL: https://www.virtualbox.org/wiki/
Linux_Downloads

For Ubuntu, double click on the .deb file, i.e. virtualbox-5.2_5.2.0-118431-Ubuntu-zesty_amd64.deb,
and install VirtualBox on your local workstation.

2.2.1. Clean VirtualBox Networking

This section is here in case you already had virtualbox installed from before. The intent is to clean
up the previous networking. If you do not need to do this, skip to Add VirtualBox Networking

Run these two commands from a Terminal:

$ VBoxManage list natnetworks
$ VBoxManage list dhcpservers

Output (example):

NetworkName: 192.168.139-NAT

IP: 192.168.139.1
Network: 192.168.139.0/24

IPvb Enabled: No

IPv6 Prefix: fd17:625c:f037:2::/64
DHCP Enabled: Yes

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads

Enabled: Yes
loopback mappings (ipv4)
127.0.0.1=2

NetworkName: 192.168.139-NAT
Dhcpd IP: 192.168.139.3
LowerIPAddress: 192.168.139.101
UpperIPAddress: 192.168.139.254
NetworkMask: 255.255.255.0
Enabled: Yes
Global Configuration:
minLeaseTime: default
defaultlLeaseTime: default
maxLeaseTime: default
Forced options: None
Suppressed opts.: None
1/1egacy: 255.255.255.0
Groups: None
Individual Configs: None

NetworkName: HostInterfaceNetworking-vboxnet®
Dhcpd IP: 172.20.0.3
LowerIPAddress: 172.20.0.101
UpperIPAddress: 172.20.0.254
NetworkMask: 255.255.255.0
Enabled: Yes
Global Configuration:
minLeaseTime: default
defaultleaseTime: default
maxLeaseTime: default
Forced options: None
Suppressed opts.: None
1/1egacy: 255.255.255.0
Groups: None
Individual Configs: None

Now, delete ALL of the pre-installed VirtualBox networks (one at a time following the syntax
below):

VBoxManage natnetwork remove --netname <NetworkName_from_above>
VBoxManage natnetwork remove --netname 192.168.139-NAT

Repeat as many times as necessary to delete all of them.

Now, delete ALL of the pre-installed DHCP services:

VBoxManage dhcpserver remove --netname <DHCP_Server_NetworkName_from_above>

VBoxManage dhcpserver remove --netname 192.168.139-NAT

Repeat as many times as necessary to delete all of them.

2.2.2. Add VirtualBox Networking

Now, add the new VirtualBox networks so the Kali Linux guides work.

VBoxManage natnetwork add \
--netname 192.168.139-NAT \
--network "192.168.139.0/24" \
--enable --dhcp on

VBoxManage dhcpserver add \
--netname 192.168.139-NAT \
--ip 192.168.139.3 \
--lowerip 192.168.139.101 \
--upperip 192.168.139.254 \
--netmask 255.255.255.0 \
--enable

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet@ \
--ip 172.20.0.1 \
--netmask 255.255.255.0

VBoxManage dhcpserver add \
--ifname vboxnet@ \
--ip 172.20.0.3 \
--lowerip 172.20.0.101 \
--upperip 172.20.0.254 \
--netmask 255.255.255.0

VBoxManage dhcpserver modify \
--ifname vboxnet® \
--enable

VirtualBox install complete.

2.3. Vagrant

Go to: https://www.vagrantup.com/downloads.html, follow the appropriate link to your OS and 32
or 64 bit version representing your local workstation. Download.

For Ubuntu, double click on the .deb file, i.e. vagrant_2.0.1_x86_64.deb, and install Vagrant on your
local system

https://www.vagrantup.com/downloads.html

NOTE Update vagrant vm: vagrant box update

2.4. Kali Linux and Damn Vulnerable Web Application
(DVWA)

The author highly recommends to create a directory structure that is easy to navigate and find your
code. As an example, you could use something similar to:

${HOME}/Source_Code/Education/vagrant-machines/kali-1linux-vm/
Go ahead and make this structure with the following command (inside a Terminal):
$ mkdir Op ${HOME}/Source_Code/Education/vagrant-machines/kali-1linux-vm/
From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-1linux-vm/

2.4.1. Vagrantfile

Inside of the kali-linux-vm directory, populate a new file with the exact name, “Vagrantfile”. Case
matters, uppercase the “V”. This file will contain both virtual machines for Kali Linux as well as
setting up the DVWA virtual machine. Aggregating both virtual machines into one file has saved the
author a lot of time. The coolness here is setting up the variables at the top of the Vagrantfile
mimicing shell scripting inside of a virtual machine (passed in with provision: shell). I tested using:
apt-get update && apt-get upgrade -y, but opted to take it out since it took over 45 minutes on my
slower (old) hardware. See comment about downloading this file immediately preceding the code
block.

-*- mode: ruby -*-
vi: set ft=ruby :

$os_update = <<SCRIPT
apt-get update
SCRIPT

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
config.vm.define "kali-linux-vagrant" do |conf]|

conf.vm.box = "kalilinux/rolling"

For Linux systems with the Wireless network, uncomment the line:

conf.vm.network "public_network", bridge: "wlo1", auto_config: true

For macbook/0Sx systems, uncomment the line and comment out the Linux
Wireless network:

#iconf.vm.network "public_network", bridge: "en@: Wi-Fi (AirPort)",
auto_config: true

conf.vm.hostname = "kali-linux-vagrant"

conf.vm.provider "virtualbox" do |vb|
vb.gui = true
vb.memory = "4096"
vb.cpus = "2"
vb.customize ["modifyvm", :id, "--vram", "32"]
vb.customize ["modifyvm", :id, "--accelerate3d", "off"]
vb.customize ["modifyvm", :id, "--ostype", "Debian_64"]
vb.customize ["modifyvm", :id, "--boot1", "dvd"]
vb.customize ["modifyvm", :id, "--boot2", "disk"]
vb.customize ["modifyvm", :id, "--audio", "none"]
vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
vb.customize ["modifyvm", :id, "--draganddrop”, "hosttoguest"]
vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]

end

conf.vm.provision "shell", inline: $os_update

end

config.vm.define "dvwa-vagrant" do |conf|
conf.vm.box = "ubuntu/xenial64"
conf.vm.hostname = "dvwa-vagrant"

For Linux systems with the Wireless network, uncomment the line:
conf.vm.network "public_network", bridge: "wlol1", auto_config: true

For macbook/0Sx systems, uncomment the line and comment out the Linux
Wireless network:

#conf.vm.network "public_network", bridge: "en@: Wi-Fi (AirPort)",
auto_config: true

config.vm.network "forwarded_port", gquest: 8@, host: 8080, auto_correct: true
config.vm.network "forwarded_port", quest: 3306, host: 3306, auto_correct:
true

conf.vm.provider "virtualbox" do |vb]|
vb.memory = "1024"

vb.cpus = "2"
vb.qui = false
vb.customize ["modifyvm", :id, "--vram", "32"]

vb.customize ["modifyvm", :id, "--accelerate3d", "off"]
vb.customize ["modifyvm", :id, "--ostype", "Ubuntu_64"]
vb.customize ["modifyvm", :id, "--boot1", "dvd"]

vb.customize ["modifyvm", :id, "--boot2", "disk"]
vb.customize ["modifyvm", :id, "--audio", "none"]
vb.customize ["modifyvm", :id, "--clipboard", "hosttoguest"]
vb.customize ["modifyvm", :id, "--draganddrop", "hosttoguest"]
vb.customize ["modifyvm", :id, "--paravirtprovider", "kvm"]

end

conf.vm.provision "shell", inline: $os_update

conf.vm.provision :shell, path: "bootstrap.sh"

end
end

Save and write this file.

You can also download from:

$ curl -o Vagrantfile http://securityhardening.com/files/Vagrantfile_20200928.txt

2.4.2. bootstrap.sh

Inside of the kali-linux-vm directory, populate a new file with the exact name, bootstrap.sh. Case
matters, all lowercase. See comment about downloading this file immediately preceding the code
block. bootstrap.sh (include the shebang in your file: the first line with #!/usr/bin/env bash):

#!/usr/bin/env bash
PHP_FPM_PATH_INI="/etc/php/7.0/fpm/php.ini’
PHP_FPM_POOL_CONF="/etc/php/7.0/fpm/pool.d/www.conf’
MYSQL_ROOT_PW="Assword12345"'

MYSQL_dvwa_user="dvwa'
MYSQL_dvwa_password="sunshine'
DVWA_admin_password="admin'
recaptcha_public_key="u8392ihj32k18hujalkshuil32’
recaptcha_private_key="89ry893287383211h32i1j32"

install_base() {
add-apt-repository -y ppa:nginx/stable
sudo apt-get update
sudo apt-get dist-upgrade -y
sudo apt-get install -y \
nginx \
mariadb-server \
mariadb-client \
php \
php-common \
php-cgi \
php-fpm \
php-gd \
php-cli \

php-pear \
php-merypt \
php-mysql \
php-gd \

git \

vim

}

config_mysql(){
mysqladmin -u root password "${MYSQL_ROOT_PW}"
Config the mysql config file for root so it doesn't prompt for password.
Also sets pw in plain text for easy access.
Don't forget to change the password here!!

cat <<EOF > /root/.my.cnf
[client]
user="root"
password="${MYSQL_ROOT_PW}"
EOF
mysql -BNe "drop database if exists dvwa;"
mysql -BNe "CREATE DATABASE dvwa;"
mysql -BNe "GRANT ALL ON *.* TO '"${MYSQL_dvwa_user}"'@'localhost' IDENTIFIED BY
""${MYSQL_dvwa_password}"";"

systemctl enable mysql
systemctl restart mysql
sleep 2

config_php(){
Config PHP FPM INI to disable some security settings:

sed -i 's/A;cgi.fix_pathinfo.*$/cgi.fix_pathinfo = 0/g' ${PHP_FPM_PATH_INI}

sed -i 's/allow_url_include = Off/allow_url_include = On/g' ${PHP_FPM_PATH_INI}
sed -i 's/allow_url_fopen = Off/allow_url_fopen = On/g' ${PHP_FPM_PATH_INI}

sed -i 's/safe_mode = On/safe_mode = Off/g' ${PHP_FPM_PATH_INI}

echo "magic_quotes_gpc = Off" >> ${PHP_FPM_PATH_INI}

sed -i 's/display_errors = Off/display_errors = On/g' ${PHP_FPM_PATH_INI}

explicitly set pool options

(these are defaults in ubuntu 16.04 so i'm commenting them out.

If they are not defaults for you try uncommenting these)

fised -1 's/MN;security.limit_extensions.*$/security.limit_extensions = \

#.php .php3 .php4 .php5 .php7/g' /etc/php/7.0/fpm/pool.d/www.conf

#sed -i 's/Mlisten.owner.*$/1listen.owner = www-data/g'
/etc/php/7.0/fpm/pool.d/www.conf

#sed -1 's/Misten.group.*$/1listen.group = www-data/g’
/etc/php/7.0/fpm/pool.d/www.conf

f#ised -i 's/A;listen.mode.*$/1isten.mode = 0660/qg' /etc/php/7.0/fpm/pool.d/www.conf

systemctl restart php7.0-fpm

config_nginx(){

cat << "EOF' > /etc/nginx/sites-enabled/default
server

{
listen 80;
root /var/www/html;
index index.php index.html index.htm;
#server_name localhost
location "/"
{
index index.php index.html index.htm;
#try_files $uri $uri/ =404;
}
location ~ \.php$
{
include /etc/nginx/fastcgi_params;
fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME $request_filename;
}
}
EOF
systemctl restart nginx
}

install_dvwa(){

if [[! -d "/var/www/html"]1;

then
mkdir -p /var/www;
1In -s /usr/share/nginx/html /var/www/html;
chown -R www-data. /var/www/html;

fi

cd /var/www/html

rm -rf /var/www/html/.[!.]*

rm -rf /var/www/html/*

git clone https://github.com/ethicalhack3r/DVWA.git ./
chown -R www-data. ./

cp config/config.inc.php.dist config/config.inc.php

chmod uploads and log file to be writable by nobody

chmod 777 ./hackable/uploads/
chmod 777 ./external/phpids/@.6/11b/IDS/tmp/phpids_log.txt

change the values in the config to match our setup (these are what you need to
update!

sed -i '/db_user/ s/root/'${MYSQL_dvwa_user}'/'
/var/www/html/config/config.inc.php

sed -i '/db_password/ s/p@sswlrd/'${MYSQL_dvwa_password}'/’
/var/www/html/config/config.inc.php

sed -i "/recaptcha_public_key/ s/"'/'"${recaptcha_public_key}""'/"
/var/www/html/config/config.inc.php

sed -i "/recaptcha_private_key/ s/''/'"${recaptcha_private_key}""'/"
/var/www/html/config/config.inc.php

}

update_mysql_user_pws(){

The mysql passwords are set via /usr/share/nginx/html/dvwa/includes/DBMS/MySQL.php.
If you edit this every time they are reset it will reset to those.

Otherwise you can do a sql update statement to update them all (they are just md5's
of the string.

The issue is the users table doesn't get created until you click that button T_T to
init.

#imysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
"admin';"

#imysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
"gordonb";"

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
|1337|;n

#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =
vpablol;n
#mysql -BNe "UPDATE dvwa.users SET password = md5('YOUR_MYSQL_PW_HERE') WHERE user =

"smithy';

sed -i '/admin/ s/password/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php

sed -1 '/gordonb/ s/abc123/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php

sed -i '/1337/ s/charley/'${DVWA_admin_password}'/qg’
/var/www/html/dvwa/includes/DBMS/MySQL.php

sed -i '/pablo/ s/letmein/'${DVWA_admin_password}'/g'
/var/www/html/dvwa/includes/DBMS/MySQL.php

sed -i '/smithy/ s/password/'${DVWA_admin_password}'/g’
/var/www/html/dvwa/includes/DBMS/MySQL.php

}

install_base
config_mysql

install_dvwa
update_mysql_user_pws
config_php
config_nginx

Save and write this file.

If you have issues with copying and pasting the above file because code blocks in PDFs always copy
correctly [NOT!], you could use curl, i.e. Make sure the bootstrap.sh file ends up in the same
directory as the Vagrantfile.

$ curl -o bootstrap.sh http://securityhardening.com/files/bootstrap_sh_20200928.txt

From a Terminal, change directory to:

$ cd ${HOME}/Source_Code/Education/vagrant-machines/kali-1linux-vm/

Then run (inside the directory kali-linux-vm):

$ vagrant up

This will download the appropriate images and start the virtual machines. Once running, through

the VirtuaBox GUI, login as root. Password is “toor”, root backwards. Edit the following file:
/etc/ssh/sshd_config

And change the line: #PermitRootLogin prothibit-password To: PermitRootLogin yes Meaning strip
the comment out on the beginning of the line and alter prohibit-password to yes.

Then restart the ssh daemon:

kill DHUP $(pgrep sshd)

Notice, you are on a Bridged adapter, this will open the instance to allow root to ssh in with the
most unsecure password in the world. Only make this change (allowing root to login via SSH) if you
require root SSH access. You can change the root user’s password, which is highly recommended.

For the DVWA instance, I would first run ‘vagrant status’ to capture the name that vagrant is using
for the running instance.

vagrant status

Choose

Current machine states:

11

kali-linux-vagrant running (virtualbox)
dvwa-vagrant running (virtualbox)

This environment represents multiple VMs. The VMs are all listed above with their current state.
For more information about a specific VM, run vagrant status NAME.

From there, log into the DVWA instance with:

$ vagrant ssh dvwa-vagrant

And then get the current IP address.

$ ip a

Choose the second network adapter, it should look like:

ubuntu@dvwa:~$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default glen
1
link/1loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host 1o
valid_1ft forever preferred_l1ft forever
inet6 ::1/128 scope host
valid_1ft forever preferred_lft forever
2: enp@s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
link/ether 02:53:17:3c:de:80 brd ff:ff:ff:ff:ff:ff
inet 10.0.2.15/24 brd 10.0.2.255 scope global enp@s3
valid_1ft forever preferred_1ft forever
inet6 fe80::53:17ff:fe3c:de80/64 scope link
valid_1ft forever preferred_1ft forever
3: enp@s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
default qlen 1000
link/ether 08:00:27:f0:77:2d brd ff:ff:ff:ff:ff:ff
inet 172.20.156.76/24 brd 172.20.156.255 scope global enp@s8
valid_1ft forever preferred_l1ft forever
inetb fe80::a00:27ff:fef@:772d/64 scope link
valid_1ft forever preferred_lft forever

The test network used for this paper uses 172.20.156.0/24 as the network range [shown here in
section 3]. Therefore, the adapter, enp0s8 is what he is looking for. The IP to use as a target is
172.20.156.76. Write down your value.

NOTE: For this paper, I changed the network adapter on the Kali VM from Host-Only to a Bridged
Adapter so that I can scan my Homelab and test my Firewall’s configuration.

12

Chapter 3. Netdiscover

Let’s see what the man page says.

netdiscover(8) active/passive ARP
reconnaissance tool netdiscover(8)
NAME

netdiscover - active/passive ARP reconnaissance tool

SYNOPSIS
netdiscover [-i device] [-r range | -1 file | -p] [-m file] [-F filter]
[-s time] [-c count] [-n node] [-dfPLNS]

DESCRIPTION

netdiscover 1is an active/passive ARP reconnaissance tool, initially developed
to gain information about wireless networks without DHCP servers in wardriving
scenarios. It can also be used on switched networks. Built on top of libnet and
libpcap, it can passively detect online hosts or search for them by sending ARP
requests.

Furthermore, it can be used to inspect your network's ARP traffic, or find
network addresses using auto scan mode, which will scan for common 1local networks.

OPTIONS
-1 device
The network interface to sniff and inject packets. If no interface is
specified, first available will be used.

-r range

Scan a given range instead of auto scan. Valid range values area for
example: 192.168.0.0/24, 192.168.0.0/16 or 192.168.0.0/8. Currently, acceptable
ranges are /8, /16 and /24 only.

-1 file
Scan ranges contained on the given file. It must contain only one range
per line.

-p Enable passive mode. In passive mode, netdiscover does not send
anything, but does only sniff.

-m file
Scan a list of known MACs and host names.

-F filter
Customize pcap filter expression (default: "arp").

-s time
Sleep given time in milliseconds between each ARP request injection.
(default 1)

14

-c¢ count
Number of times to send each ARP request. Useful for networks with
packet loss, so it will scan given times for each host. (default 1)

-n node
Last IP octet of the source IP used for scanning. You can change it if
the default host (x.x.x.67) is already used. (allowed range is 2 to 253, default 67)

-d Ignore configuration files at home dir (for autoscan and fast mode
only). This will use default ranges and IPs for autoscan and fast mode. See below for
information about configuration files.

-f Enable fast mode scan. This will only scan for .1, .100 and .254 on each
network. This mode is useful while searching for ranges being used. After you
found such range you can make a specific range scan to find online boxes.

-P Produces an output suitable to be redirected into a file or to be
parsed by another program, instead of using interactive mode. Enabling this option,
netdiscover will stop after scanning given ranges.

-L Similar to -P but continue program execution to capture ARP packets
passively after the active scan. phase to capture ARP packets passively.

-N Do not print header. Only valid when -P or -L is enabled.

-S (DEPRECATED) Enable sleep time suppression between each request. If
set, netdiscover will sleep after having scanned 255 hosts instead of sleeping after
each one. This mode was used in netdiscover 0.3 beta4 and before. Avoid this option in
networks with packet 1loss, or in wireless networks with low signal level. (also
called hardcore mode)

USAGE

If passive mode (-p), scan list (-1) or scan range (-r) options arenlt
enabled, netdiscover will scan for common LAN addresses (192.168.0.0/16, 172.16.0.0/12
and 10.0.0.0/8).

Screen control keys:

h Show help screen.
j Scroll down (or down arrow).
k Scroll up (or up arrow).
Scroll page up.
Scroll page down.
q Close help screen or end application.

Screen views:
a Show ARP replies list.

r Show ARP requests list.
u Show unique hosts detected.

CONFIG FILES

There are 2 confiquration files that netdiscover will look for, each time it is
executed. If files doesnlt exist, netdiscover will use default

values. You can use the -d switch to disable reading and loading configuration
files.

~/.netdiscover/ranges
This file contains a 1list of ranges (one per line) used for auto
scan mode instead of default ranges. By default netdiscover will use a
list of common ranges used on local networks.
Example:
192.168.21.0/24
172.26.0.0/16
10.0.0.0/8
~/.netdiscover/fastips
List containing the last octet of the IPs to be scanned on each subnet,
when using fast mode (-f), by default (1,100,154). You must put a

number per line.

USAGE EXAMPLES
Scan common LAN addresses on eth@:

netdiscover -i eth@
Fast scan common LAN addresses on eth@® (search only for gateways):
netdiscover -1 eth@ -f
Scan some fixed ranges:
netdiscover -i eth® -r 172.26.0.0/24
netdiscover -r 192.168.0.0/16

netdiscover -r 10.0.0.0/8

Scan common LAN addresses with sleep time 0.5 milliseconds instead of default

netdiscover -s 0.5

Scan fixed range on fast mode with sleep time 0.5 milliseconds instead of
default 1:

netdiscover -r 192.168.0.0/16 -f -s 0.5
Scan a range using 101 as last octet for SOURCE IP

netdiscover -r 10.1.0.0/16 -n 101

15

Only sniff for ARP traffic, don't send nothing:
netdiscover -p

AUTHOR
netdiscover was written by Jaime Penalba Estebanez <jpenalbae@gmail.com>.

This manual page was originally written by Nicolas Weyland, for the Debian
project. This man page has been merged into netdiscover project and modified from the
original by Jaime Penalba and Joao Eriberto Mota Filho.

netdiscover-0.10 29 Oct 2022
netdiscover(8)

Let’s see what the help page says.

——(rootlkali-linux-vagrant)-[~]

L—4# netdiscover -help

Netdiscover 0.10 [Active/passive ARP reconnaissance tool]
Written by: Jaime Penalba <jpenalbae@gmail.com>

Usage: netdiscover [-i device] [-r range | -1 file | -p] [-m file] [-F filter] [-s
time] [-c count] [-n node] [-dfPLNS]

-1 device: your network device

-r range: scan a given range instead of auto scan. 192.168.6.0/24,/16,/8

-1 file: scan the list of ranges contained into the given file

-p passive mode: do not send anything, only sniff

-m file: scan a list of known MACs and host names

-F filter: customize pcap filter expression (default: "arp")

-s time: time to sleep between each ARP request (milliseconds)

-c count: number of times to send each ARP request (for nets with packet loss)

-n node: last source IP octet used for scanning (from 2 to 253)

-d ignore home config files for autoscan and fast mode

-f enable fastmode scan, saves a lot of time, recommended for auto

-P print results in a format suitable for parsing by another program and stop after
active scan

-L similar to -P but continue listening after the active scan is completed

-N Do not print header. Only valid when -P or -L is enabled.

-S enable sleep time suppression between each request (hardcore mode)

If -r, -1 or -p are not enabled, netdiscover will scan for common LAN addresses.

3.1. Default scan with a subnet range

We can quickly run a scan against a subnet with the -r option. As the help page shows above, this
can be targeted against Classless Inter Domain Routing (CIDR) with the exact sizes of: /24, /16, and

/8.

16

——(rootlkali-linux-vagrant)-[~]
L—# netdiscover -i eth1l -r 192.168.99.0/24

Output:

Currently scanning: Finished! | Screen View: Unique Hosts

5 Captured ARP Req/Rep packets, from 5 hosts. Total size: 300

IP At MAC Address Count Len MAC Vendor / Hostname
192.168.99.1 60:22:32:28:cf:bf 1 60 Ubiquiti Inc
192.168.99.2 60:22:32:28:cf:bf 1 60 Ubiquiti Inc
192.168.99.188 24:77:03:c4:7d:2c 1 60 Intel Corporate

1
1

192.168.99.253 76:7c:f2:43:32:87 60 Unknown vendor
192.168.99.209 68:5d:43:3f:7c:f8 60 Intel Corporate

3.2. Scan with subnet ranges in a file

For testing purposes only, I created a file with all of my valid local subnets to see what the tool
could find.

——(rootlkali-linux-vagrant)-[~]
L—# cat ranges.txt
192.168.42.0/24

192.168.43.0/24

192.168.55.0/24

192.168.77.0/24

192.168.99.0/24

172.20.156.0/24

172.20.157.0/24

172.31.254.0/24

And then ran the scan with the following options:

——(rootlkali-linux-vagrant)-[~]
L—+# netdiscover -i eth1 -1 ./ranges.txt

Output:

Currently scanning: Finished! | Screen View: Unique Hosts

5 Captured ARP Req/Rep packets, from 5 hosts. Total size: 300

IP At MAC Address Count Len MAC Vendor / Hostname

17

192.168.99.1 60:22:32:28:cf:bf 1 60 Ubiquiti Inc
192.168.99.2 60:22:32:28:cf:bf 1 60 Ubiquiti Inc
192.168.99.188 24:77:03:c4:7d:2c 1 60 Intel Corporate
192.168.99.253 76:7c:f2:43:32:87 1 60 Unknown vendor
192.168.99.209 68:5d:43:3f:7c:f8 1 60 Intel Corporate

What I like about this a lot is this tool just validated the 33 Firewall rules I set up in my UniFi UDM’s
Firewall. I can see traffic on the local network only, but routing to the other subnets is prohibited.

3.3. Netdiscover Passive mode

With the -p option, we can run the tool in passive mode, where it does not actively send packets
outbound.

——(rootlkali-linux-vagrant)-[~]
—4# netdiscover -i ethl -p

Output:

Currently scanning: (passive) | Screen View: Unique Hosts

4 Captured ARP Req/Rep packets, from 2 hosts. Total size: 240

IP At MAC Address Count Len MAC Vendor / Hostname
192.168.99.209 68:5d:43:3f:7c:f8 3 180 Intel Corporate
192.168.99.1 60:22:32:28:cf:bf 1 60 Ubiquiti Inc

We can see the current host, with the last octet of .209 as well as the router with the last octet of .1.

18

Chapter 4. Conclusion

We have gone through and shown the basic usage on this tool and some working examples. The
results are real world and showing the Author’s Homelab. Netdiscover is what I consider an
enumerating tool, in that a network person can leverage this to understand exactly what is on a
network.

"Netdiscover is an active/passive address reconnaissance tool, mainly developed for those wireless
networks without dhcp server, when you are wardriving. It can be also used on hub/switched
networks.

Built on top of libnet and libpcap, it can passively detect online hosts, or search for them, by
actively sending ARP requests.

Netdiscover can also be used to inspect your network ARP traffic, or find network addresses using
auto scan mode, which will scan for common local networks.

Netdiscover uses the OUI table to show the vendor of each MAC address discovered and is very
useful for security checks or in pentests." — Netdiscover page, Kali Linux Tools

The author is re-stating the developer’s original messaging because it drives the intent and purpose
of this tool. It is meant to enumerate both Wireless and Wired networks and does that one job very
well. The only quirk the author could find in the tool is that it does NOT handle CIDR addresses
outside of [/24, /16, /8], meaning as a user, you get to expand your subnets that you wish to scan.

E.g. Instead of:
172.20.156.0/23
You get to expand that to:

172.20.156.0/24
172.20.157.0/24

The Netdiscover tool is another useful tool to add to your toolbelt when you need to quickly
discover what is on a subnet and don’t wish to pull out nmap or said is not available because of
security restrictions at your local site.

Until next time, continue securing the network and Living your Life!

19

Chapter 5. Appendix

References

https://www.kali.org/tools/netdiscover/
https://github.com/netdiscover-scanner/netdiscover

https://kalilinuxtutorials.com/netdiscover-scan-live-hosts-network/

20

https://www.kali.org/tools/netdiscover/
https://github.com/netdiscover-scanner/netdiscover
https://kalilinuxtutorials.com/netdiscover-scan-live-hosts-network/

	How to securely isolate and execute Netdiscover from Kali Linux
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Requirements
	2.1. Writing Conventions
	2.2. VirtualBox
	2.2.1. Clean VirtualBox Networking
	2.2.2. Add VirtualBox Networking

	2.3. Vagrant
	2.4. Kali Linux and Damn Vulnerable Web Application (DVWA)
	2.4.1. Vagrantfile
	2.4.2. bootstrap.sh

	Chapter 3. Netdiscover
	3.1. Default scan with a subnet range
	3.2. Scan with subnet ranges in a file
	3.3. Netdiscover Passive mode

	Chapter 4. Conclusion
	Chapter 5. Appendix

