Creating Users/Groups and applying Role
Based Access Controls in Kubernetes the
Hard Way.

Introduction:

Let’s get one thing clear, creating users, groups and implementing role based access
controls on your newly created kubernetes cluster (k8s) for short is the last thing on
your mind. You spent all this time achitecting all components in your cluster as well as
your ingress from outside the organization. Or maybe this is just a home based test
cluster for you to keep your skills sharp. Either way this is an import practice to be
prepared for. Your security team will always ding you for this when you go to get your
cluster approved for production use. Most likely you will hook your cluster to an
enterprise authentication service such as Keycloak or a Windows Domain Trust. Both of
those solutions are outside the scope of this article, we will go over how to:

® Setup new users via Certificate Signing Requests
e Creating Roles/Role-Bindings
e Configuring your kube.config settings

® (Create ServiceAccounts

If you are planning on or working towards obtaining your Certified Kubernetes
Administrator title, then this is a great article for reference. Granted this covers only
the RBAC topic but great for having under your belt. | remember having to implement
all of our RBAC rules a year after we stood up all of our various clusters when | worked
for RedHat at the Securities and Exchange Commission in Washington D.C. We had
various types of users we had to account for. We had Developers, Cluster-Admins,
Admins, Cluster-Viewers. All with a different set of privileges. Thankfully once you get
all the role and role-bindings figured out for one cluster then you can easily apply them
to the other clusters with a simple “kubect| create —f <pathtoRole.yamls>". Just as in
most of linux type work, the hard work comes first and then you are either able to script
it out, or save that config in confluence or some GIT repo.

| also want to cover the use cases for Service Accounts. There may be some instances
where you will want, or more importantly need to use an account that isn’t linked to a

human entity user. | have personally used a service account via authentication token to
preform image pruning nightly. Very useful and highly recommended.

Terminology:

First | want to get everyone on the same page with not only the various terms, or in the
kubernetes world the resources that are configured to accomplish RBAC.

Role or ClusterRole: Contains rules that represent a set of permissions. Permissions are
purely additive (there are no "deny" rules)

Whenever you create a Role, they will always set permissions for a specific namespace.
This is why you must ensure you are setting these Roles to the correct namespace. If
you don't do this, they will be applied to the default project or whichever project your
context is currently set to.

ClusterRoles have other uses worth discussing:
® You can use them for a single namespace
® You can use them across all namespaces

e Define cluster-scoped resources
Sample Role:

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:
namespace: default
name: stage-1l-admin

rules:

- apiGroups: [""] # "" indicates the core API group
resources: ["pods,deployments,replicasets,services"]
verbs: ["get", "watch", "list","create",”delete”]

Here is what it looks like when | describe the role | just created:

[root@controlplane ~]# kubectl describe roles red-team-ops

Name: stage-1-admin

Labels: <none>
Annotations: <none>
PolicyRule:
Resources Non-Resource URLs

Resource Names Verbs

pods,deployments,replicasets,services [] []
[get watch list create delete]

RoleBindings: RoleBindings bind whatever roles you create to subjects in the cluster
which are users, groups or service accounts. Usernames in Kubernetes are stored as
strings, and it's important to be mindful of what naming convention you use. For
instance the prefix of 'system:" is reserved for Kubernetes. The above role will grant a
user the permissions to “get, watch, list, create” to “pods, deployments, replicasets,
services”. All other resources are blocked from the user. You can use this to give fine
grained access rights.

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: evan-binding

namespace: default

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: stage-1-admin

subjects:

- apiGroup: rbac.authorization.k8s.io
kind: User
name: evan

[root@controlplane ~]# kubectl describe rolebinding evan-binding

Name: evan-binding
Labels: <none>
Annotations: <none>

Role:

Kind: Role

Name: stage-1-admin
Subjects:

Kind Name Namespace

User evan

ClusterRoleBindings: Can also be used in this same way, but you will be able to grant
permissions cluster wide instead of being restricted to a single namespace. Be careful
to watch out for the namespace field in a ClusterRoleBinding since it will restrict
permissions to that namespace value. | use the ClusterRoleBindings to create my admin
users in the cluster forexample.

Example ClusterRoleBinding:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: read-secrets-global
subjects:
- kind: Group

name: manager

apiGroup: rbac.authorization.k8s.io
roleRef:

kind: ClusterRole

name: secret-reader

apiGroup: rbac.authorization.k8s.io

Please take note that once this resource is created you cannot update or change the
‘roleRef" field. You must delete it and recreate the clusterrolebinding. This is a security
feature to enforce the bindings and to not allow an entity to update this resource.

We have defined a role that would constrain the user “evan” to only be able to perform
a couple of actions or “verbs” on a handful of resources within the default namespace.

Now that we went over and covered the basics, we can move to actually configuring
these settings in our cluster.

Aggregated ClusterRoles: A Controller running in the cluster watches out for these very
resources. If you are so inclined you may bundle or aggregate several ClusterRoles
together as long as the "aggregationRule” is set. The aggregationRule defines a label
selector that the controller uses to match other ClusterRole objects that should be
combined into the rules field.

Here is an example aggregated ClusterRole:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRolemetadata:
name: monitoring

aggregationRule:

clusterRoleSelectors:
- matchLabels: rbac.example.com/aggregate-to-monitoring:
Iltr‘uell

rules: [] # The control plane automatically fills in the rules

Service Accounts: A service account provides an identity for processes that run in a Pod.
When you (a human) access the cluster (for example, using kubectl), you are
authenticated by the apiserver as a particular User Account (currently this is usually
admin, unless your cluster administrator has customized your cluster). Processes in
containers inside pods can also contact the apiserver. When they do, they are
authenticated as a particular Service Account (for example, default).

kubect! create serviceaccount cloud-admin -n default

[root@controlplane ~]# kubectl describe sa cloud-admin

Name: cloud-admin

Namespace: default

Labels: <none>

Annotations: <none>

Image pull secrets: <none>

Mountable secrets: cloud-admin-token-1t2q6
Tokens: cloud-admin-token-1t2q6
Events: <none>

[root@controlplane ~]# kubectl get secret

NAME TYPE

DATA AGE

cloud-admin-token-1t2q6 kubernetes.io/service-
account-token 3 2m29s

default-token-22gzf kubernetes.io/service-
account-token 3 49d

As you see in the above commands | created a service account named cloud-admin in
the default namespace, described the service account and could also see its secret
token that was generated. We will use this token as its authentication into the cluster.

kubectl get secret cloud-admin-token-1t2g6 -o yaml

apiVersion: vl

data:
ca.crt: LSOtLS1CRUdITiBDR.........
namespace: ZGVmYXVsdA==
token: ZX1KaGJHY21lPa.........

Then:
export TOKEN=’ ZX1KaGJHY2lPa......... ?
echo $TOKEN | base64 -d

Or you can use this method:
kubectl get secret cloud-admin-token-It2g6 -o jsonpath='{.data.token}' | base64 -d

Copy the token value from either commands just don’t include the word “token:” just
the value. You still do have to create the ClusterRole and ClusterRoleBinding, don’t
forget.

As | mentioned earlier, | have used service accounts to kick off a prune job within the
cluster for maintenance. Since those jobs require cluster-admin or something
comparable, that’s why | chose this method. Maybe you want to use Jenkins or gitlab to
perform some tasks. You would’t want it to use god-mode of the cluster-admin user;
you would want Jenkins to have its own account with its own specific grouping of
permissions.

Here is a perfect example of someone else actually going through the whole process for
Jenkins and cloud-bees:

https://support.cloudbees.com/hc/en-us/articles/360038636511-Kubernetes-Plugin-
Authenticate-with-a-ServiceAccount-to-a-remote-cluster

Setting up the user Certificate Signing Request:

There are couple requirements that we first must take care of before a new user can
authenticate to the cluster and API. There has to be a certificate issued by Kubernetes
and the same cert present to invoke the API via kubectl. Hopefully you have your very
own cluster to practice these steps, here we go:

Create the private key

e openssl genrsa -out evan.key 2048

* openssl req -new -key evan.key -out evan.csr
Create the Ciertificate Signing Request

e cat <<EOF > evan.request
apiVersion: certificates.k8s.io/v1l
kind: CertificateSigningRequest
metadata:
name: evan
spec:
groups:
- system:authenticated
request: <PUT BASE64 ENCODED CSR HERE>
signerName: kubernetes.io/kube-apiserver-client
usages: - client auth
EOF
e # cat evan.csr | base64 | tr -d “\n”
e Then Paste that output in the “request:” field is.
Create CSR in the cluster
® # kubectl create -f evan.request
Veiw and approve CSR
e # kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
evan 103s kubernetes.io/kube-apiserver-client kubernetes-admin Pending
e # kubectl certificate approve evan
certificatesigningrequest.certificates.k8s.io/evan approved

The following command grabs the kubernetes signed certificate from use “evan”

and puts it in it's own file called evan.crt

[root@controlplane ~]# kubectl get csr/evan -
ojsonpath="'{.status.certificate}' | base64 -d > evan.crt

® Nextis to add the user and their credentials to your kubeconfig

[root@controlplane ~]# kubectl config set-credentials evan --
client-key=evan.key --client-certificate=evan.crt --embed-
certs=true

User "evan" set.

[root@controlplane ~]# kubectl config set-context evan --
cluster=kubernetes --user=evan

Context "evan" created.

[root@controlplane ~]# kubectl config use-context evan
Switched to context "evan".

[root@controlplane ~]# kubectl get po

Error from server (Forbidden): pods is forbidden: User "evan"
cannot list resource "pods" in API group "" in the namespace
"default”

® Since we just created the new user, they don’t have to permissions to do
anything within the cluster. So next we will create the Roles and RoleBinings to
allows “evan” to stop being a lazy devops guy.

[root@controlplane ~]# kubectl create role stage-1-admin --
namespace default --
resource=pods,deployments,services,replicasets --
verb=create,delete,get,list,watch
role.rbac.authorization.k8s.io/stage-1-admin created
[root@controlplane ~]# kubectl create rolebinding evan-binding --
role=stage-1-admin --user=evan
rolebinding.rbac.authorization.k8s.io/evan-binding created

® Now by using the kubectl auth command you can see what evan can and can’t
do in the cluster.
[root@controlplane ~]# kubectl auth can-i get po --user evan
yes

[root@controlplane ~]# kubectl auth can-i get daemonsets --user
evan

no

Here is the command to switch back to the kubernetes-admin user:

#kubectl config use-context kubernetes-admin@kubernetes --
cluster=kubernetes --user=kubernetes-admin

Conclusion

Knowing how to set up users in your cluster via RBAC is a good skill to keep in your back
pocket. You never know if your organization wants to stick to in house solutions for
solving user authentication and seperation of duties. Me personally, | would use
something like Keycloak that's performing a group sync from a Domain Controller but
we don't always live in a perfect world. Even if you are not managing users the way, you
will still come across reasons to implement RoleBindings or ClusterRoleBindings in your
cluster. Lastly, if it has the word "Cluster" in it, just think to yourself.... do they really
need that much power?

| hope this helps you on your way to kubernetes greatness and securing your cluster just
with the power of k8s.

References:

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/

https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#api-overview

https://support.cloudbees.com/hc/en-us/articles/360038636511-Kubernetes-Plugin-
Authenticate-with-a-ServiceAccount-to-a-remote-cluster

10

